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CRAPTER 6 = PrevicTion, APPUCATIONS, AND MORE
RASILS o0 DISCRETE KALMAN FILTERING

PRED\ CTioN

- Recal| our formulation Lor the discredte Kalman £ ller;

— FProcees Model:

XKH = ¢|< XK + Wi LS,G,!)
Zk'—‘ HKXK+ Vi (5.‘5.2)

—> Tnitalize %5 and B,
> Ttecate:
) ) -
k\<=- PK H\I (HKP\: pﬂ;rfRK) (S‘S"—’)

ho= R+ (e ide)  (59) (Fiter)

ez (T-KeH)RS (5:5:2%)
A _ _ A
Xygwt = C'éKXK (5:5:23) ? (Pre.o\c‘c{')
Mert = @i P @ + Qx (5.5:25)

| - R ‘ ‘ +
——-*> Xegr 15 &4 one-ste prea\\c—‘nw\ wl h
Kt

ercor  covarionce WMatrix Ve -
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- Awn ad)i'h'ovm‘ cet of ec()ma{"ims st lar to ‘HAQ
P Cediction equations  (s.5.23), (5.525) can be

0dded Yo +
predicton. he Kalwon Qitter o per form N-step

J_\\_Ojg: The ove-step pr‘eA\‘c‘\'le s shIl needed Yo
Herate \’b\e Litter

‘N~S'f’€4§ Fred:‘(‘{'fm %ua'ﬁmS:

kaH\llK): gb(k*w,ia);z,ck(k) (6-01)
P(ksnlk) = Pletn, k) Plrlk) QT ken, k)t Q (kN k) (4.0.2),

—5 X(k+nlk) 16 the cotimate of the state vectyr

al +ime \eeN givem k OES&rVa('i’MQ_

— PCKTM,K\ s the evvrovr covariance vmahrf)(
associated with Q(kalk),

-/ Q(k*“)k) = E[Wu)kxw‘;)l;&j

W\Néfﬁ WN"‘\‘S -rke. W\MJ(& V\Uif (0“%%"0\4*(‘”\

4o the byS’\’em shate vecxor OLCCMW“"(“
pver N T\Wec’(e:ﬂpéj Eegmm‘nj at step f<-

tedl

PAGE 6.2




EX: |
—  N=3, k=0, k¥N=3

X|= ¢0Xo T Woe
xz.—.gb, X, T Wi
- é.[¢a¥o* WO]"' W,
= ¢|4)on+¢|“’0 W
:Xzi @Xz ¥ N]_
= ¢z[¢,¢oxo+¢,wo fwl] +WL
= ¢z.¢| ¢o Xo + ¢2¢1W0f ¢)_w| t Wz_
|\

\_——-v--) ——— ——
B(3,0) Ws o

— Theve ate two wain +y;>e$ o+ Fred(r\'{a/\
prosleme Hat can be  ctudied

TVPE 4: Fixed Prediction \nf@rvq\,
- Tn this casey N i Lixed and the kalman
£ lter texates on k as befere.
- At each step, a new observation Zp T$
Processed O derive predictions
KOatlk)  and klkrn|K). The “smothed”

or "Nitered’ ectimate  {(kIk) u also
P roduced.

— Pken|E) Wdicales the reliability of the
Peediction Rekenlr), PAGE 6.7




TNEE 2+ Fixed +iM85+eP—
-k 15 Fixed. No wew observations are
processed.

~ N i ‘\'{"e,(‘a”('ea CLCMdMJ t N=L2,3,... to

Froo\uce predictions ith [owj&r and \O'V\fyé’/r
Pre.d:chw\ mYervals.

- The Le\mviq’ of PlkeNlk) as N advamces
indicates how rapidly the quality of the
Bredichians degeades as the interval g rows,

Example of o “NType 2" Application:

- The +im\'vxj on the rang ing sigmls TransmiHed 57/
He GPS satelliteg is dithered To 'MT@Wr{cmally

introduce an errer in Civilian Yeceiver
aPP”CQ-"I‘&V\!a

- The dej?adaﬁm ts called “NSA" €or
“eletive. guallyg l>c"i+y ",

- The eyvpr limits the l'\(,nzw-l'ql ateuvracy of
civillan receivevs 1 about j0OWM.

- Itis possible for g figed earth Shation To receive
the <catellite ranging signals and use it¢ knowwn

\Oixed ,PO'SH'?W\ to compute a covrectiom .
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— The correction can then be tvanswmitred ag¢ an
awxilliary s\“ﬂv\_a\.
- \JS‘Mj the satellite ranging giﬂmls along with an

avnxiliary  correctren S\“gna’ t compute a wmere
accurate Position echimate s known as

i€ ecential GPS”
- Range and range rate corrections ate normally
"(mvagm‘\-ﬂéd/ but emly T re,laﬂvefy coarse. timesteps.

= Thu, the differential - receiver mus) extrapolate
*l'\e' ;POSi"'"m between updﬁ’fﬁ times when the

&

3c\i§\‘e«r6¥\4m' Sr‘ﬁnal 15 achuql{), v"ece\‘ueoj.

= When ¢ difterentially corrected  positran
L B s oLserveA, the

feceiver must then compute
predictions

X(e1[k), R(esalk), X (ke3]k), ...

MWHI 'H'\C ney f Corfc.g—feﬂ 'P051"{’fm can A@
OEservcd,

- A ;.'MP//‘-Pu‘eal Version of this Pf_‘ob'm IS ACSc:_u_ged(
N example (.| o pase 244 of the boolc .
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| AH'GV‘M&WQ T:OFWWL\OCHU/\ o¥f ‘HAe, l(q\w\u\ an'er

—~ If thwe sta¥e vecxorr S not ‘oo \arje/ there (s
an  alternative Lormulation ot the Kalwman L lter

Yt can be used.

—This Qrm \'\us A SRMP\PA’ 8%\>r6!§\‘0/\ {:W’ Hoa k«\wm
Qam Sequence kk, but mvolves wat rix inversieng,

~From  be (urf)
- (kM) RS (£5.22)

Ke = BH (MeRTH + RO (505007)
— Substituting (S.5.17) jwte  (5.5.22), We obtain

= (- Rowd (epen +R Y W ) R

= B - R HE (R RCHCHR) T H B (6:23)
- Now,

P [(B)+ HIRIH, ]

[PK FK. HK(H\ﬁFL uL*PRv.) HKF{. ][(,PK) +H R\gl”z_]

v\/w_‘___/______/—\—/\_,-———»
(¢.2.3)
—
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FRTROY R ROWIRI 1y
“ B (e RCHE R ) H R (R
- ROH (WP U R Y M PE TR
- T+ l—kZ [RE' - (HKP\;H;*RK)_‘I
- P WI AR e ROHS RS | He

- - P Y - - -‘ i
= I~ ROHy [(HeR U7+ Re )™= RO (MR T+ Re) \“LW”IE:]HK

= T-Rd (HKP[H\I “'Rhy|(1+ MKFC-HIR\:‘)‘ RK—\]HK
= I-R’ HK L(HKPK HKH?K) (RKRK + HeRC Ic JHK

= I‘P{”L [(“KPK'HZ'PRK)-,(HKB;HKT"'Rk)RK‘-I_ K_’]HK

= I-RoH [Re-Re T hy
N

Zevp

[
) H

= Tlr\u€) W PK‘) P.{') and Ry are invertible, then

R = (R) e HIRI M (624)
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éE%M*‘\M "(é'2'4‘) Can Ee, iV\UW‘\'ed +o 0")“"«.‘” PK gm 'P;'
- Aaa\"'\r\ Frm Ba@oré)
K = R (MATRT + R (50507)
= IR H T (MR AT+ R
< PR R HLR RK(u& an,_)
e -
R UL RY(HeBe MRS + ReRe')
= KA R Hf& RK (HKF[HLRt "‘I) !
- Flgging n (62:4) fir B e obtem

) )
Ky = FK[(P.:) TR HK] R Hy O (e HERS +L)
=P oyt r N o\~
R[R)"R +/4,<,re.;1|4.<r>,(_'IHKR\L (heBHIR +1)”

FK[I"’ u R( ‘HKFL J \-‘ (Hr, PL— “; R\c"+1 >‘,

RN
= R LR )(hERe) + HTRe MR JHER (MR W R +T)
= RHIR (R ™+ e TR (e R R+ )
< RHe Re :Ir HePC He R J (T HR HeRC )

= RHIRS (625)
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- EC()%*‘MS (GZ4') O\V\A [éoZS) 6}\!&. ‘HAQ al'h?f'hah‘v&.
t(x*w\v»\oc’ﬁw\‘. |
Rz (R IR H,  (b2t) = (620¢)

Ky = P He RY (6:25)= (6:2:7)

— With Fhs -(:meld"im,
= Bois Lound Rirgt wsing  (6:2.¢).
= Kicis then fomd ucing (67.7).
= The Yeration for the kalmey Ller ic now:

. Twitialize (Po’)—' and )?;.

2. k=20 |

> 3R (BRI e (6208)
4. K= RHTRS (b2.7)
b Xz Xg + Ki (2e- Hk Q,Z) (5.5-%)
6. f([ﬂ = @ ;\(K (S.5.23)
1R = @y P @ + Q. (5.6.25)
8, k=krl

——

Pace -9




— This alternative  focmulation 15 espeaally usebul
1+ the witial Stale Vector exrcer (ovariance matriy

has very large entries 5o Hut, Lo example,
\’%' = a\{‘aj (oa)aj - -y oa)
— With the usua| @wmu(af‘ic/\,

Ko= Bt (H,B- 1S +R, )

'S determinate w tie case.

—> With fl'\e a!'t'emq+:'v€. @Wu‘qh‘m, b\ﬂhﬁuer/
We \l\a\Je

B = (R) +HIRS'H, = HiRo'Ho
which Can Ee used 1o Campufe ko \ASii!j (612‘7)‘

’AVI @MMF(e o€ Hats 15 3(‘0&/\ " E)MMP(C é,Z N
Peqe 248 of the beok.
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6.3

PROCESSING THE MEASUREMENT

VECTOR ONE COMPONENT AT A TIME

We now have two different Kalman filter al
and 6.3. They are, of course, algebraically

gorithms as summarized in Figs. 5.8

equivalent and produce identical es-
timates (with perfect arithmetic). The choi

¢e as to which should be used ina

each recursive cycle. If the dimension of the state
Vector n is large, this is, at be

the matrix inverse that appear:
same order as the measureme

uncorrelated, th
nated entirely by processing t
now be shown.

We begin with the expression for the updated error Covariance, Eq. (6.2.6):

he scalar measurements one at a time.* This will

®RO™| 0 | 0] H:

_ , —_ l —_— ] —
P = (P! + [HZT" H,l‘zr'l -]l o ,] (R,':)*lll 0 || H (6.3.1)
, ..

o | o |

The second term in Eq. (6.3.1) is intentionally written in
R, is assumed to be at least block
measurements available at ¢,

errors among the q, b, .

partitioned form and
diagonal. Physically, this means that the

can be grouped together such that the measurement

. . blocks are uncorrelated. This is often the case when

struments. We next expand the

st, awkward computationally. On the other hand,
s in the regular algorithm given in Fig. 5.8 is the
nt vector. Since this is often less than the order of
the state vector, it js usually the preferred algorithm. Furthermore, if the mea-
Surement errors at time ¢, are e inverse operation can be elimi-

Note

assim
availa
now |
trivia
a pric
have

be re
is the
proct
of th
be p;

the s

timit
one-
upd:
inS
aritt

ani
thin
that
For
or i
am«
is tl
H™
ver
fur

poi
me
ter
at

Sii
ni
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LTERING 6.3 PROCESSING THE MEASUREMENT VECTOR ONE COMPONENT AT A TIME 251
ct from P! = P+ H,‘jT(Rz)“'HZ + HRY)'HE + - - (6.3.2)
srnative p-1 after assimilating
: unce; * block a measurements
p-! after assimilating both
* block a and b measurements
and so forth
Note that the sum of the first two terms is just the P; ! one would obtain after
assimilating the “block a” measurement just as if no further measurements were
Figs. 5.8 available. The Kalman gain associated ,with this block of measurements may
itical es- now be used to update the state estimate accordingly. Now think of making a
sed in a trivial projection ahead through zero time. The a posteriori P then becomes the
sorithms a priori P for the next step. When this is added to the b term of Eq. (6.3.2), we
on using have the updated P;! after assimilating the second block of data. This can now
Joid two be repeated until all blocks are processed. The final estimate and associated error
the state is then the same as would be obtained if all the measurements at ¢, had been
ier hand, processed simultaneously. Thus, the designer has some flexibility in the design
3.8 is the of the system software. The available measurements at any particular time may
order of be processed either in blocks, one block at a time, or all at once, as best suits
the mea- the situation at hand. One-at-a-time measurement processing is illustrated in the
be elimi- timing diagram of Fig. 6.4. Note that once we have established the validity of
This will one-at-a-time processing, it makes no difference whether we use the “‘usual”
update formula given in Chapter 5 (see Fig. 5.8) or the alternative formula given
I (6.2.6): in Section 6.2. The end results are the same (within the limits of computational
arithmetic). ‘ ‘ .
The concept of processing the measurements one block at a time leads to F ,
an interesting physical interpretation of P inverse. With reference to Eq. (6.3.2), :
63.1) think of (P;)~! as a measure of the information content of the a priori estimate,
~ that is, before the new measurement information is assimilated into the estimate.
For simplicity, begin with P;)"! = 0. This corresponds to infinite uncertainty,
or zero information. Then, as each measurement block is processed, we add an
amount H'R™'H to the previous information, until finally the total information
form and is the sum indicated by Eq. (6.3.2). The term “add” is appropriate here because
s that the H'R™'H is always positive definite. For the heuristic reasons just noted, P in-
asurement verse is often referred to as the information marix. This concept is developed
-ase when further in Chapter 9 in the discussion of decentralized filters (Section 9.6).
xpand the One-at-a-time processing is also useful from a system organization view-
: point. Often the system must have the flexibility to accommodate a variety of
Mmeasurement combinations at each update point. By block processing, the sys- ; ;
tem may be programmed to cycle through all possible measurement blocks one
sential at a time, processing those that are available and skipping those that are not. ‘
;;f:g of the Simultaneous processing requires a somewhat more complicated system orga- [
ally one at a nization whereby the system must be able to form appropriate H, and R, ma-
ng. The terf! ; trices for all possible combinations of measurements, and it must be prepared ]
xessing W to do the corresponding matrix operations with various dimensionality.
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Ly

ing 241
Using z,),,

update &;,, — §,4)
Update P}, - P2}

update ¥; - ()
Update P} - PV

Compute K@
Using 22,

update X1 4§
Update P{l’ ; pi2

Compute K 2,
Using 22},

update £{1) 5 £2)
Update P}} - P2

. / . \
: Y /o

(m)
Compute Ki7)
/| Using 2™,
A - A
update X} 7" g™,

/ | Update PiT ., ptm), /

Compute K™
Using z{™,
A A
update X{™D _, y(m
Update P{™1) _, p(m

/
A A / A ) A /
Propagate X{"> %;, .1 / Propagate X7} — x;,,] 7
Propagate P{™— p; / Propagate P{7) - P}, /

k+1

Figure 6.4 Timin

essing (m = number of elements in the measurement vector z).

There are bound to be so

me applications where
all mutually correlated, The R, matrix is then “ful].”

at-a-time processing is desirable, linear combination

Gram-Schmidt orthogonaliz
ward and an exercise is incl

6.4
POWER SYSTEM
RELAYING APPLICATION

New applications of Kalman filterin
these are now outside the ori
application has to do with po
occurs on a three-phase tran
promptly and take appropria
system. The hierarchy of dec

trip (and where) is relatively complicated. It suffices to

tk+1 . n;
T Y B
| VA

Compute K{V Compute K {1}

Using z{V,

g diagram for one-at-a-time measurement proc-

the measurement errors are
If this is the case, and one-

s of the measurements may

g keep appearing regularly, and many of
ginal application area of navigati
Wer system relaying (9, 10). When
smission line, it is desirable to sens
te relaying action to protect the re
isions that must be made as to whic

on. One such
a fault (short)

mainder of the

h relays should
say here that it is desir-

abl
do
sie:
the
No
me
val
ne
(ne
vo

-
nﬂs:’ﬂ‘:ﬁﬂnngqe&ﬂn

Voltage |




| AVoid"Vlj Dwefaemﬁ Probleme with the Ka|man F;H—er

-\M\&ar cer¥an Cfvcu\ms&aﬂces} ~H\e Vecursive Ka\wmm
{»\;,\'e;(inj equations can  Sometimes d\‘uev*ge_

— Whew thic happews, tThe gains, the Pwatrix, or
oth can c|\'VQ'fje,

— There are three wain Lactors that can  Cause Cl""”jﬂ“’
humerical voundef€ errors, w\er\rv\j errors, and lack
ot observa[a{!("’y of one of move sState variakleg.

_— € (ac\(. ot oﬁse,rvqhi)(fy“ MEANG ~HMHL _HI\Q OEDS'@(VC(’HQQS
contain no nformation about one or more eleweunts
o€ the <ixate vecetor

. I }
=[] = e ]ln] - L]
%3 k+) | o X3 K l
= ] X,
2y : 'O][xz] + Yk
K

— In this Case | +he oEServaﬁw\S contuin no
information abput the stete variagble X3,

—> Thus, as k00, our Uncertainty about X3
caw gmw'w’\ﬂno‘u‘i’ bound. This cavses
Pk + divevje as K=o,

PrGE & 1]




RM‘AOGG E rvrecq

~ Numerical coundof€ errors can accumulate and cavse

diverqence problems as the number o€ steps 11 k
becomes large.

- It
A stafe variables ave sbseryable
2. The input noise wy drives all state veariables

—> Then  the Kalmen filter has a certain
ac\eﬁf’ree of natural s{'a':ili{-y v,

— A steady state solution e B norwally exists,
even \f the systew dynmamics ave nougtaticnary.

—> Ay lmj as the 't‘(—erqjﬁve solution for [ Cemaing
positive definite (..‘.e., Syw\mcwa‘c)) it will

teud to retutm tv the steady state solutien
ofter a perturbation.

WOoTE - The P-update equation
FK: CI' KKHK)P\&— (5-5-22)
s \_r\:o_'__\’ 3wmnfee& o rewain positive

defimite when £inite precision arithmetic
1S HSéde

PaGE 6.12



- Diverqence problems due o foundoté exvors
Musk generally be hundled on a case by cate basis.

— The Po\\owivxj way \r\e\? y
. Wée M§3kvPrecisim crithmetic whenever Possib't.

2. I the observatims are sporse ) sotit “k" wmay

advane Meny 5{«3?5 between Hie arpival of
(w\;ecwh‘ve oLseer'('inS) then i+ advis«uﬂ

o aqe the P matriy using  the N-step update

Plken]k) = @eien, k) P(E(k) GTCrenk) +QLENE)

(6.1.2)
InsYead of iterating the usue) ore-step updute

Fes (T-KeH )BT (5.5.22)
Rt = B L+ (55.25)

3. Avoid situations where one or wmore Sta'e variahles
ore hotv dtriue,v/\ l‘by WK) (‘e,) QUO“A Mudelé
Hhat Wave c\c\'crw\ivu‘ﬂcl <Hate vaviables,

— A Swmal\l ervor can Cavsé ‘the P matrix o \056
Symmetry and diverge.

A) Reformulate the state wode| Yo rewosve
deXevministic Skate veviables

B) Tnject noice into the states by -aoQA\‘Wj Smal]
Posi Yive c{,ua“f"*ies o thwe elewewts of the
Ma o dCagovxa( ot Q. P%E ét's




Note » R) above. wakec the kalwan Filter suboptimal

(becavse the systewn wode) s wcorvect) | hut this
is preterable o divergence.

4, Force the T and B wmalrices to be symmetric
at each \reratten of “k'. One way to do
the i€ 4o propagate only the upper or lower
C\iajovxa\ -Q«L{'orieq‘h‘m ot ?k and P\c..'

5. Avoid larqe uncertaiaty PK' when a k\'jk‘y precise
obser va tion 2 witl force FK. to Ee' small Ce.ﬂ,)

when V. hes a4 very small covorionce wmatriy),

- Ta this case, te B urcdate eguation
PK':.(I" KK“K) PK.- CSrS-ZZ)

will approach the wdeterm v e Lorm O x .
—> One solution & +o reduce the maqnitudes of
the entries of Pe o This wmales the Kalmen
£ilter Subop'\'iwtt!/ But ag win Pre\‘eral:‘é—
To divergence.
NoTE, For Prvb\ewts 4, oud S. akove, Ry Wy alo
help 4o use an alternative P update €Quation
Sucw a4
P = (T-KiHe) R (T~ kLHk)T"’kKP\KK‘E (5:519)
Whith Wes watural Symmetiy and 16 wmore ¢kable
V\\Aw\en‘cu(‘y than (5.5.22). PAGE é,)'h




N\oc\e\;mgj Errevs

- The Kalwman £ilter s 3ev\em(\y Cgufﬁ sensitive o
modeling errers.

— Try o aveld thewm !

—> A'\y mstruments used 1 wmeasur ing the

observatiars 2, sioull bhe kept well
calib rated.

—> Almss+ al] physical guantities dri¢t at leasd
a little bit; thus, beware of conghant
Valued “determinishic? state variables,

I they cannct be awided, onsider
iV\jec'\‘Mj hotse a¢g i 3,B) absve,

O bsecvability FrOElE@

— Sometimes the wmeasurewents 2, dp wot Prow’de

Chough information to ectimate all of the state
Var feble

- Ohe or wore state variables Waay be Widden frumm
View and net observable  (futernal” skate voriables)

- I8 the (m‘d&v\ Va,via\)\es are uws*a‘:fe, the P ww&w'x
will diverse evew i+ theve are p, roundofl eyvers,

—>

PAGE 6-1>




_‘D{qﬂm\ ewtres w the P matrix covre spwdinj
to the unobservable states May diverge even 1€
'Hr\e, ProC@SS 16 stable,

- The oy\(y real solution to thig Pmbléw« is +» add
additiamal weasurements 15 the z, veckor that

wil| FFW&AE N format o about +the hidden
State Variables,

RQ(Q%W\SL?P o Determivistic Leacd Squores F"Hmj

o,

*-Cor\sider' Qa Se'\' of m liwnear ecéua+«'aws LN
X = [X, Xe voe thT ‘

My = b
M: wmxn
X "\x,
b nx .

*SuPPOSe M >N, SO 'HMT ﬂ\e syd’ew\ \S 0Verde(€u'w:'wecl.
- Assume also that the Systewmr i« incomsistent.
— The Problew\ s to find an op‘n‘w\al solution

Xopt Por X that il WM imize the error £

qluen by
MXOFT -b=£ .

fo the \\C\uSsicaV/ least squares Lormulgtion:
6.16




— We %evxem\i{e ’by Caﬂsk\eriwg the “‘we\‘ah{'ed v
squay ed —envor

EZ,'Z\»J = CMXop’r -E)\/‘/CMXoP'\'"b)T.

— This s called tHhe “we ij\n-\'ed least g%wresﬂ Pro’blem,

- —y The classical leact Squares problewy is ob'('amed}
k\/ ‘(’akiwj wW=1>L.

- DI@F@/‘&V\‘HQHWJ Eu Evw with recpert 1o Xopk and
SQ\'\W\j '\'jv\e fecult @%\AQ\ o 2eN0, We o*:‘\'a'u’\
2(MWM) Xopt = (T WM) -M Wb = O.
- The deterministic weijh*ed le act Squo ves
solution 1S qiven b-'7 |
Xopt = [ (Mwm) ' mTw | b
— The Kalman Fiter solntion Pr\oceeAs as Lollows:

— X is assumed to be a randow  Constunt,
— The system c\yv\amim( €quatian is therefere

X=0.
= The cl\‘ScrE'l'e Q—hﬁe Space Mer\ (S
Xk“ = IXK + O Wk
2 = He Xe + Y

wheve Z,&65b and H e M. PAGE 6.7



. . A - LY
~ Griven M‘lv\i‘\"f&t\ estimate Ko avw\ OLSQOC\Q{{?A
ewor covoerianee watyi - Steriort
X Po ) the a pe Yerion

estimale )20 wil) cotrespond to the deterministc
weighted least squares Solutten, provided

- We take )'{o‘ =0
2. We take Po‘ = A;aj (o) .
3. We take Ry = W.

- Wel " +he atternative Kalman Cilter formulatin,
we then have

Pl =(R) + Ho R Ho
- HoT Rs' Ho
ko - Po \'\g R;‘
= (IR M, ) He Ry
Xo = X5 + ko, (2545 £o'>
- Ko o
- (W5 R KT RS ] 24
= [(wwm)! wTw]b 4

— Iy $hic case, the we(j\,\-\'@( least squeres solutien
agqrees with the Kalwman £ilter solution when we
have wo a priorf kv\ow!p&ﬁe o€ X; awd o

knowledge of the nolse siatishies. PAGE 618
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for a moment and reflect on just what we have (and do not have) with this thing
we call a Kalman filter. ;

1. The Kalman filter is intended to be used for estimating random pro-
cesses. Any application in a nonrandom setting must be viewed with
caution (see Example 6.6).

2. The Kalman filter is model-dependent. This is to say that we assume
that we know a priori the model parameters. These, in turn, come from
the second-order “statistics” of the various processes involved in the
application at hand. Therefore, in its most primitive form, the Kalman
filter is not adaptive or self-learning.

3. The Kalman filter is a linear estimator. When all the processes involved
are Gaussian, the filter is optimal in the minimum-mean-square-error
sense within a class of all estimators, linear and nonlinear. [See Meditch
(2) for a good discussion of optimality.]

4. Various Kalman filter recursive algorithms exist. The “‘usual” algorithm

was given in Chapter 5, an alternative one was presented in Chapter 6,
and a third one (U-D factorization) will be presented in Chapter 9. All
of these yield identical results (assuming perfect arithmetic).

. Under certain special circumstances, the Kalman filter yields the same

result obtained from deterministic least squares (see Section 6.8).

6. Kalman filtering is especially useful as an analysis tool in off-line error
analysis studies. The optimal filter error covariance equation can be
propagated recursively without actual (or simulated) measurement data.
This is also true for the suboptimal filter with some restrictions (see
Section 6.7).

tad
W

With these brief comments in mind, we are now ready to proceed to vari-
ations on the original discrete Kalman filter. It is worth mentioning that the
discrete filter came first historically (1960). The continuous version and other

variations followed the discrete filter.

PROBLEMS

6.1 The process of landing on an aircraft carrier is a highly complex operation
primarily because the carrier deck is constantly in motion with a certain degree
of randomness that is attributable to wind and sea conditions. In particular, one
motion called heaving changes the vertical displacement of the carrier deck.
Accurate prediction of the heave motion even 10 to 15 sec into the future will
significantly enhance the success of the landing operation.

In a paper published in 1983, Sidar and Doolin (21) suggested using Kal-
man filter methods to predict the motion of the carrier deck. On the basis of
empirical data, they developed a power spectral density (PSD) for the heave
motion, and then they worked out an optimal predictor based on this spectral
model. The functional form for the PSD to be used here comes from the
Sidar-Doolin paper, but the amplitude factor has been changed for convenience.
Also, the measurement noise variance R, and the sampling interval used here
are hypothetical. Thus, there is no claim that the results of this problem represent
an exact real-life situation.
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