
ECE 2713

Homework 3

Spring 2024 Dr. Havlicek

DUE: 03/07/2024, 11:59 PM

Introduction:

You will need to use Matlab to complete this assignment. So the first thing you need to do
is figure out how you are going to do that.

The best option is to install Matlab on your own computer. There is a handout on the
course web site that explains how to do this. As explained in the handout, for this option
to work from off campus you have to start the OU VPN client before you start Matlab.

The second option is to buy the student version of Matlab. It costs $99. If you want
to do this, you can find a link for it by googling for “purchase matlab student version.” In
general, the student version will keep on working until you are not a student any more. At
times, you may have to provide The Mathworks with documentation to prove that you are
still a student.

The third option is to run Matlab on the OU CoE Virtual Labs. You can use the OU
VPN to do this from home. It sometimes runs really slowly! For this reason, I would consider
this option mainly as a backup in case your first choice fails on the night that something
is due. There is an excellent handout How to Use Matlab on the Virtual Labs available on
the course web site that explains how to make this option work; it was written by Dr. Chad
Davis.

Finally, there is a fourth option: Matlab is available through the Virtual Labs on all
of the computers located in the CoE computer labs. Since this option requires you to be
physically sitting in one of the on-campus labs to do any work, you will probably want to
consider it only as a “last ditch effort” in case all of the other options fail you on the night
that something is due.

Matlab is an interpreted computing environment and programming language. This means
that there is a command prompt and you can type Matlab statements directly at the prompt.
They get compiled and executed as soon as you hit the Enter key. Because it is an inter-
preted language (instead of a compiled one), you are free to make new variables, change
the sizes of arrays, and define new data structures as you go along. One of the biggest
advantages of Matlab is that it provides lots of powerful built-in functions that you can call
to do complicated things like plot functions, read and write multimedia files, or even design
sophisticated filter banks.

Instead of typing your Matlab statements at the command prompt, you can also put
them in a file and then run the file from the command line. This is called an m-file. The
file extension should always be “.m,” as in program1.m. Then, if you type program1 at the
command prompt, the Matlab statements in the file will be executed. This is especially

1

useful if you are solving a complicated problem that requires hundreds or thousands of
Matlab statements. When you type the name of an m-file at the command prompt, Matlab
looks for the file in the current directory. The current directory is displayed near the top of
the main Matlab window. There is also a search path that you can configure to tell Matlab
where to look for your m-files, but we will not need to do this for ECE 2713.

You can use any editor you want to make an m-file. It must be a plain ascii file. So if
you use MS WORD as your editor, then you need to save the m-file as plain text. Matlab
also provides a specialized editor for creating and editing m-files. To start a new m-file
using the Matlab editor, click the “New Script” button on the HOME tab. By clicking
the “Open” pulldown on the HOME tab, you can open an existing m-file for editing in the
Matlab editor, including an m-file that you created using some other editor. One of the nice
things about the Matlab editor is that it has a built-in debugger that lets you do things like
set breakpoints, single step your m-file, and examine the values of variables.

Matlab provides powerful syntax that can be used at the command prompt or in m-files
to define and call functions and define abstract data types and objects. But we will not need
much of that for ECE 2713.

Matlab also provides help for all of the statements and built-in functions. For help on
the special variable j =

√
−1, type help j at the command prompt. For help on the built-in

cosine function, type help cos at the command prompt. As you work this assignment, you
should read the help for all of the functions that are being called in the problem you are
working on.

You should go ahead and start Matlab now.

Note: If you are on the Virtual Labs, click the “Start” menu and type matlab in the search
box – this should start Matlab (or at least put an icon for it on your desktop). This will
work on your laptop or home computer too, but if you installed Matlab properly then you
should already have a desktop icon.

The default view in Matlab will have a command window and several panes such as “Current
Folder” and “Workspace.” I usually get rid of the “Workspace” pane and add a docked
“Command History” pane. This can be done by clicking the “Layout” button on the HOME
tab. The reason I like to have a “Command History” pane is because you can click previous
commands there and drag them to the command window. Then you can execute them again.
You can also edit them before you execute them. This can save a lot of typing.

Preliminaries:

Before you get started on the assignment, let’s go over some Matlab basics. To make a
comment in Matlab, you type a percent sign (%). You can put comments in your m-files
and you can also type comments at the command prompt. Matlab provides a command
whos that lists your variables along with their data types. The default type for variables in
Matlab is double precision matrix. Scalars like 5 will be stored in a 1×1 matrix. Try typing
the following lines at the command prompt:

2

% Make a variable x and set it equal to 5

x = 5; % everything after this "%" sign is a comment

whos

If you end a Matlab statement with a semicolon (;) like we did above, then nothing gets
printed when the statement executes. If you leave off the semicolon, then the result of the
statement will be printed to the command window. Try typing in this Matlab code:

y = 5

z = 6;

% I wonder what z is equal to?

z

To clear your workspace and start over fresh, use the clear command. Type in the following
Matlab code:

whos

clear

whos

z

The last statement above makes an error because there is no longer any variable named z.
The clear command destroyed it.

Row vectors are stored as 1×N matrices and column vectors are stored as N × 1 matrices.
The semicolon is used to end a matrix row. To transpose a vector or matrix, use a single
quote. Try this Matlab code:

x = [1 2 3]

y = [4; 5; 6]

z = y’

Addition and subtraction in Matlab work the way you think they should. The two things
that you are adding must have the same size. By default, multiplication in Matlab is matrix
multiplication and the two matrices must be conformable. That means that the number of
columns in the first matrix (or vector or scalar) must be equal to the number of rows in the
second one. Try typing these lines:

a = x * y

b = x * z

The last line made an error because x and z are not conformable. There is also a .*

operator that performs “pointwise” or “element-by-element” multiplication. This is known
as the Hadamard product or Schur product. There is a good explanation of it on Wikipedia.
Type these Matlab statements:

3

b = x .* z

c = x + z

Use three periods (...) to continue a Matlab statement across multiple lines like this:

d = ...

b - z

Type in the following Matlab code that illustrates how to make matrices, multiply them
pointwise, and perform matrix multiplication (note: Matlab variable names are case sensi-
tive):

A = [1 2; 3 4];

A

B = [4 5; 6 7];

whos

C = A * B

D = A .* B

The entries of a Matlab scalar, vector, or matrix variable are allowed to be complex. By
default, both i and j can be used for the imaginary unit

√
−1. You can also redefine i and

j to be variables. Make sure that you don’t redefine them both! For ECE 2713, you should
use j for the imaginary unit. Try this Matlab code:

z1 = 1 + 2*j;

z2 = 3 + 4*j;

whos

z3 = z1 + z2

z4 = z1 * z2

z5 = conj(z4) % complex conjugate

real(z4) % real part of z4

imag(z4) % imaginary part of z4

abs(z4) % magnitude of z4

angle(z4) % angle of z4 (in rad)

When you call functions like conj and real on a matrix or vector, they are applied to all
of the elements individually. The syntax to address individual elements of a Matlab array
(vector or matrix) looks like this: b(4), A(2,3). For matrices, the first index is the row
and the second index is the column. Matlab array indices start at one (this is different from
languages like C where the array indices start at zero). You can also have loops in Matlab.
Type in this Matlab code:

i = 2;

b(i)

b(2)

4

for row=1:2

for col=1:2

A(row,col) = A(row,col)*2;

end

end

A

Notice that the loops don’t execute until you have typed the last end statement.
There is a colon operator (:) that can be used to generate a range of integers like this:

n = -2:2

With two colon operators, you can generate an equally spaced vector of real numbers like
this:

p = [-1:0.5:1]

When used as an array index, an expression like 2:3 extracts a range of array elements.
When a colon is used by itself as an array index, it extracts all elements along one or more
dimensions. Try these tricky Matlab statements:

G = [A B; B A];

whos G

G

G(1,:)

G(:,1)

G(2:3,1)

G(2:3,3:4)

G(:)

G(:)’

Now clear your workspace and let’s get started with the assignment.

What to Turn In:

Submit your solution for this assignment electronically on Canvas by uploading a file to the
“HW03” page.

To find the “HW03” page you can either scroll down on the “Home” page for this course
or you can use the navigation links on the left side of the “Home” page to go to

ECE-2713-001 > Assignments > HW03

You can make your turn-in file with MS WORD or with any other editor that you prefer.
Your turn-in file must be an MS WORD “.docx” file or a PDF file. To create PDF from MS
WORD, print the file to PDF.

5

If you are using the Virtual Labs, make sure to save all your files before you log out!

As you work the problems, you can use the mouse to cut your Matlab code and resulting
output from the command window and paste them into your turn-in file. You can also use
the Matlab diary command to save a session log from the command window to a file like
this:

diary my.txt

x = [1 2 3];

x(1)

diary off

This will save your command window session to a file called my.txt in the current directory.
You can then open it with WordPad or WORD and paste it into your turn-in file.

As you create figures and graphs, they will show up in Matlab Figure Windows. You
can use the File pulldown menu of any Figure Window to save the graph or figure in that
window as a JPEG file or a BMP file. Then, you can insert the saved JPEG or BMP file
into your turn-in file as a picture.

Note: To make the color work on the Virtual Labs, I had to open “Export Setup” from the
File menu of the Matlab Figure window and uncheck the “custom color” box. If you are
using the Virtual Labs, you may have to this too if you see that color is not working.

Make sure to include your name in your turn-in file and add a title at the top of the first
page that says “ECE 2713” and “Homework 3.” Number the problems and paste in your
Matlab code and the resulting command window output. Paste in the figures and graphs
and make sure to include answers for any discussion questions.

The Assignment:

1. In this problem, you will use Matlab to generate and plot the discrete-time unit impulse
signal δ[n] and unit step function u[n]. Matlab provides two built-in functions that will
be useful. The call zeros(m,n) returns an array of zeros with m rows and n columns.
Similarly, ones(m,n) returns an m× n array of ones.

Our first challenge is that Matlab array indexing starts at one; but for plotting δ[n]
and u[n] we will want to have the time variable n start at some negative integer. So
we will have to use one array (let’s call it n) to hold the values of n and another array
to hold the values of the signal. In other words, the array n will hold the values from
the domain of the signal (i.e., the “independent variable” values) and we will make a
second array (delta n for example) to hold the values of the signal from the range.

Consider the following Matlab code which generates the signal δ[n] and plots it:

6

%--

% P1a

%

% generate the signal \delta[n] and plot it

%

n = -10:10; % values of the time variable

delta_n = [zeros(1,10) 1 zeros(1,10)];

stem(n,delta_n);

axis([-10 10 0 1.5]);

title(’Discrete Unit Impulse Function’);

xlabel(’Time index n’);

ylabel(’\delta[n]’);

(a) Type in the code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file (see page 2 above for how to create an m-file).

(b) Modify the code above to generate and plot δ[n−2] for −10 ≤ n ≤ 10. If it seems
unclear how to do this, then remember that back on page 2 I recommended for
you to read the Matlab help for every function that is being called as you work
through this assignment. If you did that (i.e., if you read the Matlab help for all
the functions that are called in the code above), then it should become clear to
you how to modify the two calls to the zeros function in the code above so that
it will generate δ[n− 2] instead of δ[n].

(c) Use the Matlab functions ones and zeros to generate and plot the signal u[n] for
−10 ≤ n ≤ 10.

(d) Generate and plot u[−n− 3] for −10 ≤ n ≤ 10.

2. Consider the following Matlab code, which generates a discrete-time cosine signal x[n]
and plots it:

%--

% P2a

%

% generate and plot a discrete-time cosine signal

%

n = 0:40; % values of the time variable

w = 0.1*2*pi; % frequency of the sinusoid.

phi = 0; % initial phase offset.

A = 1.5; % amplitude.

xn = A * cos(w*n + phi);

stem(n,xn);

axis([0 40 -2 2]);

grid;

7

title(’Discrete Time Sinusoid’);

xlabel(’Time index n’);

ylabel(’x[n]’);

(a) Type in this code and run it.

(b) What is the length of the signal x[n]? In other words, for how many values of
the time variable n does the signal assign a value? Hint: you can use the matlab
length function to answer this question like this: length(xn).

(c) What is the fundamental period of x[n]?

(d) What is the purpose of the grid command?

(e) Modify the code so that it generates a second sinusoid with length 50, frequency
0.4 × 2π radians per sample, amplitude 2.5, and a phase offset of −π/2 radians.
Run the modified code to generate and plot this second discrete-time sinusoid.

3. (a) Use Matlab to generate and plot the discrete-time signal

x[n] = sin (ω0n)

for the following values of ω0:
−29π

8
, −3π

8
, −π

8
, π

8
, 3π

8
, 5π

8
, 7π

8
, 9π

8
, 13π

8
, 15π

8
, 33π

8
, and 21π

8
.

• Plot each signal for 0 ≤ n ≤ 63.

• Label each graph with the frequency.

• Use the subplot function to plot four graphs per figure.

• Here is some code that will do all of this. You can type it in line-by-line at
the command prompt or you can create an m-file.

%--

% P3a

%

% plot a bunch of discrete-time sine signals

%

% The frequency will be w = k*pi/8.

% Load up the k’s into a vector:

%

kvals = [-29 -3 -1 1 3 5 7 9 13 15 33 21];

% make a counter to index the "next" k to use:

next_k = 1;

n = 0:63; % the time variable

8

% There are 12 k values. We will plot four per

% figure. So we will need three figures all

% together. Loop on figures.

for Fig_num=1:3

figure(Fig_num); % selects the "current" figure

% each time through this loop, we are going to do

% 4 of the k’s. Loop on Sub Figure number:

for SubFig_num = 1:4

k = kvals(next_k);

next_k = next_k + 1;

w = k * pi/8; % the frequency

xn = sin(w*n);

subplot(4,1,SubFig_num);

stem(n,xn);

title(sprintf(’%d%s’,k,’\pi/8’));

end % for SubFig_num

end % for Fig_num

(b) Are any of the graphs from part (a) identical to one another? Explain.

(c) How are the graphs of x[n] = sin (ω0n) for ω0 = 7π
8

and ω0 = 9π
8

related? Explain.

4. (a) Modify the code from Problem 3 to generate and plot the discrete-time signal

x[n] = cos (ω0n)

for the following values of ω0:
−29π

8
, −3π

8
, −π

8
, π

8
, 3π

8
, 5π

8
, 7π

8
, 9π

8
, 13π

8
, 15π

8
, 33π

8
, and 21π

8
.

• Plot each signal for 0 ≤ n ≤ 63.

• Label each graph with the frequency.

• Use the subplot function to plot four graphs per figure.

(b) Are any of the graphs from part (a) identical to one another? Explain.

5. (a) Use Matlab to generate and plot the discrete-time signal

x[n] = cos(0.09n)

for 0 ≤ n ≤ 120. For your plot, turn the grid on and scale the axes using the
Matlab statements

axis([0 120 -1.0 1.0]);

grid;

9

(b) Is this signal periodic? Explain.

6. There are two main ways to represent continuous-time signals in Matlab. One way
is using symbolic math, which we’ll do later. For this assignment, we’ll use the other
way, which is: make a Matlab vector that actually contains samples of the signal, but
where the samples are spaced so densely that it looks like a continuous-time signal
when we plot it.

Consider the Matlab code below which generates a continuous-time complex exponen-
tial signal and then graphs the real and imaginary parts in one figure and the magnitude
and phase in another figure.

%--

% P6a

%

% generate and plot a continous-time complex sinusoid

%

t = -4:0.01:4; % values of the time variable

w = 2.2; % frequency of the sinusoid.

xt = exp(j*w*t);

xtR = real(xt);

xtI = imag(xt);

figure(1); % make Fig 1 active

plot(t,xtR,’-b’); % ’-b’ means ’solid blue line’

axis([-4 4 -1.0 2.0]);

grid;

hold on; % add more curves to the same graph

plot(t,xtI,’-r’); % ’r’ = red

title(’Real and Imaginary parts’);

xlabel(’Time t’);

ylabel(’x(t)’);

legend(’Re[x(t)]’,’Im[x(t)]’);

hold off;

mag = abs(xt);

phase = angle(xt);

figure(2); % make Fig 2 active

plot(t,mag,’-g’); % ’-’ = solid line; ’g’ = green

grid;

hold on; % add more curves to the graph

plot(t,phase,’-r’); % ’r’ = red

title(’Magnitude and Phase’);

legend(’|x(t)|’,’arg[x(t)]’);

10

xlabel(’Time t’);

ylabel(’x(t)’);

hold off;

(a) Type in and run this code.

(b) Use similar Matlab statements to generate the continuous-time damped exponen-
tial signal

x(t) = 3e−t/2ej8t

for 0 ≤ t ≤ 4. Plot the real part, imaginary part, magnitude, and phase.

Hint: for multiplying the two exponentials, you need to use the .* operator like this:

xt = 3.0*exp(-t/2).*exp(j*w*t);

If you try to just use * instead, you will get an error because * means matrix mul-
tiplication – and the “matrices” 3.0*exp(-t/2) and exp(j*w*t) are both actually
vectors, so they are not conformable and can’t be multiplied as matrices (see notes
pages 1.79 - 1.85 if you have forgotten what conformable means).

11

