
ECE 2713

Homework 6

Spring 2024 Dr. Havlicek

DUE: 04/22/2024, 11:59 PM

What to Turn In:

Submit your solution for this assignment electronically by uploading a file to the course
Canvas page.

You can make the file with MS WORD or with any other editor that you prefer. Your turn-in
file must be an MS WORD “.docx” file or a PDF file. To create PDF from MS WORD,
print the file to PDF.

If you are using the Virtual Labs, make sure to save all your files before you log out!

As you work the problems, you can use the mouse to cut your Matlab code and resulting
output from the command window and paste them into your turn-in file. You can also use
the Matlab diary command to save a session log from the command window to a file like
this:

diary my.txt

x = [1 2 3];

x(1)

diary off

This will save your command window session to a file called my.txt in the current directory.
You can then open it with WordPad or WORD and paste it into your turn-in file.

For figures and graphs, you can use the File pulldown menu of the Matlab Figure Window
to save them as JPEG or BMP files and then insert them into your turn-in file as pictures.
To make the color work on the Virtual Labs, I had to open “Export Setup” from the File
menu of the Matlab Figure window and uncheck the “custom color” box.

Make sure to include your name in your turn-in file and add a title at the top of the first
page that says “ECE 2713” and “Homework 6.” Number the problems and paste in your
Matlab code, the resulting command window output, and the figures and graphs.

Introduction:

In this assignment, we are going to work with discrete-time signals that have a finite length.
To make the mathematics work out right, it is very important that our finite-length signals
will always start at n = 0 and end at n = N − 1. So, an 8-point signal x[n] will have length
N = 8. It will be defined from n = 0 to n = 7. Outside of this range of n’s, the signal is not
defined. It’s important for you to understand that x[n] is not equal to zero for other values
of n; it does not even exist for other values of n!
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• Remember from Homework 3: the default view in Matlab will have a command window
and several panes such as “Current Folder” and “Workspace.” I usually get rid of the
“Workspace” pane and add a docked “Command History” pane. This can be done by
clicking the “Layout” button on the HOME tab. The reason I like to have a “Command
History” pane is because you can click previous commands there and drag them to the
command window. Then you can execute them again. You can also edit them before
you execute them. This can save a lot of typing.

The Assignment:

Here is a simple example of an 8-point signal x1[n]:

n

0 2 3 4 5 6 71

We can write the signal x1[n] like this:

x1[n] = δ[n− 1] + δ[n− 2] + δ[n− 3] + δ[n− 4] + δ[n− 5], 0 ≤ n ≤ 7. (1)

It’s important to write that last part: “0 ≤ n ≤ 7,” because it tells the reader that this
signal x1[n] is not defined for other values of n. In other words, it tells the reader that x1[n]
is an 8-point signal that only exists for 0 ≤ n ≤ 7.

In Matlab, you can represent this signal with a vector (array)

x1n = [0 1 1 1 1 1 0 0];

You must always remember that our time index n starts at n = 0, but Matlab arrays start
with index 1. The first element of the Matlab array is x1n(1), but in terms of the actual
finite-length signal this is x1[0], which is for n = 0. Similarly, the last element of the Matlab
array is x1n(8), but this is really x1[7] corresponding to n = 7.

Because the signal x1[n] is defined only for 0 ≤ n ≤ 7 and not for all n ∈ Z, it does not
have a discrete-time Fourier transform (DTFT) X1(e

jω). But it does have an 8-point discrete
Fourier transform (DFT) X1[k]. Like x1[n], X1[k] also has length N = 8. It is defined for
0 ≤ k ≤ 7 and it takes complex values. If you want to graph it, you can graph the real part
and the imaginary part, or you can graph the magnitude and the angle (phase). Usually, we
graph the magnitude and the phase.

The 8-point DFT X1[k] is given by

X1[k] =
7∑

n=0

x1[n]e−j2πkn/8, 0 ≤ k ≤ 7. (2)
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It gives us a way to write an 8-point signal like x1[n] as a sum of the eight DFT basis functions
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basis functions is a complex sinusoid and their frequencies are given by k(2π/8) = kω0, where
ω0 = 2π/N and 0 ≤ k ≤ 7. As always, the transform (2) is the inner product (dot product)
between the signal x1[n] and the basis functions.

To compute the DFT of x1[n], we have to compute the complex number X1[k] for each k
from 0 to 7. So all together, we have to “do” the equation (2) eight times – once for each k.

For each time that we do the equation (2), the sum requires eight complex multiply-add
operations. So the overall computational complexity is 64 complex multiply-add operations.
More generally, for an N -point signal the computational complexity is N2 complex multiply-
add operations.

The fast Fourier Transform (FFT) is a family of fast algorithms that rearrange the
terms of the sum (2) in a tricky way that makes maximum re-use of partial products. This
reduces the computational complexity from N2 complex multiply-add operations to N log(N)
complex multiply-adds. For an 8-point signal, it reduces the complexity from 64 multiply-
adds to 40 multiply-adds. For N = 4096, it reduces the complexity from about 16.8 million
multiply-adds to 49,152 multiply-adds.

Once you have used the DFT equation (2) to compute the eight inner products X1[k]
for k = 0, 1, 2, . . . , 7, then you can write the signal x1[n] by adding up these inner products
times the basis functions. This is called the inverse discrete Fourier transform (IDFT). It is
given by

x1[n] =
1

8

7∑
k=0

X1[k]ej2πkn/8, 0 ≤ n ≤ 7. (3)

Matlab provides a built-in function fft that uses the FFT algorithm to compute the DFT
in Eq. (2). Matlab also provides a built-in function ifft that uses the FFT algorithm to
compute the IDFT (3).

1. Consider the following Matlab code which computes the DFT of the signal x1[n] in (1)
and plots the DFT magnitude and phase as functions of k. The program also plots
the DFT magnitude as a function of the Matlab array index and as a function of the
radian digital frequency k(2π/8). Type in this code and run it. You can type it in
line-by-line at the command prompt or you can create an m-file.

%--------------------------------------------------------

% P1

%

% - Create and plot the signal x_1[n] as a function of n.

% - Compute the DFT X_1[k]. Plot the magnitude and phase

% as functions of k.

% - Plot the DFT magnitude as a function of the matlab

% array index.
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% - Plot the DFT magnitude as a function of the discrete

% radian frequency w.

% - Compute and plot the IDFT.

%

n = 0:7; % time variable

x1n = [0 1 1 1 1 1 0 0]; % our 8-point signal

X1k = fft(x1n); % compute the DFT

X1kmag = abs(X1k); % magnitude of the DFT

X1karg = angle(X1k); % phase of the DFT

% plot the signal

figure(1);

stem(n,x1n);

axis([0 7 0 1.5]);

title(’Original Signal’);

xlabel(’n’);

ylabel(’x_1[n]’);

% plot DFT magnitude and phase as functions of k

k = 0:7; % frequency index

figure(2);

stem(k,X1kmag); ylim([0 6]);

title(’DFT Magnitude’);

xlabel(’k’);

ylabel(’|X_1[k]|’);

figure(3);

stem(k,X1karg);

title(’DFT Phase’);

xlabel(’k’);

ylabel(’arg(X_1[k])’);

% plot DFT magnitude as a function of Matlab index

Matlab_idx = [1:8]; % Matlab index

figure(4);

stem(Matlab_idx,X1kmag); ylim([0 6]);

title(’DFT Magnitude’);

xlabel(’Matlab index’);

ylabel(’|X_1[index]|’);

% plot DFT magnitude as a function of discrete frequency

% (radians per sample)

w = [0:2*pi/8:7*2*pi/8]; % discrete frequency
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figure(5);

stem(w,X1kmag); ylim([0 6]);

title(’DFT Magnitude’); ylim([0 6]);

xlabel(’discrete radian frequency \omega’);

ylabel(’|X_1[\omega]|’);

% Compute and plot the IDFT

x2n = ifft(X1k);

figure(6);

stem(n,x2n);

axis([0 7 0 1.5]);

title(’IDFT’);

xlabel(’n’);

ylabel(’IDFT’);

People often refer to the eight numbers X1[k] as “the DFT coefficients” of the signal
x1[n]. Here is a table that shows, for each DFT coefficient X1[k], the Matlab array index,
the DFT frequency index k, the digital frequency ω in radians per sample, and the digital
frequency f in cycles per sample:

Matlab array index 1 2 3 4 5 6 7 8

DFT freq index k 0 1 2 3 4 5 6 7

ω, rad/sample 0(2π/8) 1(2π/8) 2(2π/8) 3(2π/8) 4(2π/8) 5(2π/8) 6(2π/8) 7(2π/8)

f , cycles/sample 0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8

Now we need to remember two important things about discrete-time complex sinusoids.
First, we only need frequencies from −π to π to make all the possible graphs. Second,
subtracting any integer multiple of 2π from the frequency does not change the graph.

In the table above, notice that the radian frequencies for the DFT coefficients with k = 5,
6, and 7 are all ≥ π. Subtracting 2π from the frequency for the k = 5 DFT coefficient, we
get 5(2π/8) − 8(2π/8) = −3(2π/8). This does not change the graph of the basis function
at all. So we can think of the k = 5 DFT coefficient as being for frequency +5(2π/8), or,
equivalently, as being for frequency −3(2π/8).

Similarly, we can think of the k = 6 DFT coefficient as being for frequency +6(2π/8) or
for frequency 6(2π/8)−8(2π/8) = −2(2π/8). And we can think of the k = 7 DFT coefficient
as being for frequency +7(2π/8) or for frequency −1(2π/8).

Finally, we can think of the k = 4 DFT coefficient as being for frequency +4(2π/8) or for
frequency 4(2π/8) − 8(2π/8) = −4(2π/8). Notice that this is the “N/2” coefficient, where
N = 8 is the length of the signal. People often refer to this DFT coefficient as being for
both of the frequencies ±4(2π/8).
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So let’s draw the table again, but this time we will subtract 2π from the frequencies of
the k = 4, 5, 6, and 7 DFT coefficients. It’s important for you to remember that this does
not change anything. The signals ej5

2π
8
n and e−j3

2π
8
n have exactly the same graph. They are

just two different ways of writing the same DFT basis signal.
So here’s the new table:

Matlab array index 1 2 3 4 5 6 7 8

DFT freq index k 0 1 2 3 4 5 6 7

ω, rad/sample 0(2π/8) 1(2π/8) 2(2π/8) 3(2π/8) ±4(2π/8) −3(2π/8) −2(2π/8) −1(2π/8)
f , cycles/sample 0/8 1/8 2/8 3/8 ±4/8 −3/8 −2/8 −1/8

From this new table, you can see that the DFT coefficients in the first half of the array are
for the positive frequencies, but the coefficients in the second half of the array are actually
for the negative frequencies.

So, when we look at a DFT array in practice, we usually swap the left and right sides of
the array so that the negative frequency coefficients are on the left, the zero frequency (DC)
coefficient is in the center, and the positive frequency coefficients are on the right.

Here is what the table looks like after we swap the left and right halves of the array:

NEW Matlab index 1 2 3 4 5 6 7 8

OLD Matlab index 5 6 7 8 1 2 3 4

DFT freq index k 4 5 6 7 0 1 2 3

ω, rad/sample ±4(2π/8) −3(2π/8) −2(2π/8) −1(2π/8) 0(2π/8) 1(2π/8) 2(2π/8) 3(2π/8)

f , cycles/sample ±4/8 −3/8 −2/8 −1/8 0/8 1/8 2/8 3/8

This is called the centered DFT. Matlab provides a built-in function fftshift to center
the DFT array for you. Matlab also provides a built-in function ifftshift to un-center it.
If you center a DFT, then you must always un-center it before you try to invert!

So, for example, if you wanted to compute the magnitude and phase of the centered DFT
and then invert, you could do it like this:

X1kshift = fftshift(fft(x1n)); % compute centered DFT

X1kmag = abs(X1kshift); % centered spectral magnitude function

X1karg = angle(X1kshift); % centered spectral phase function

x2n = ifft(ifftshift(X1kshift)); % YOU MUST UN-CENTER before you invert!

2. Modify the Matlab code in Problem 1 to compute and plot the magnitude and phase
of the centered DFT for the signal x1[n] in (1). Plot the centered magnitude and phase
as functions of the radian frequency ω and of the Hertzian frequency f . Also compute
and plot the inverse DFT.
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Hint: you may find the following Matlab statements helpful for making the “x-axis”
quantities to use in the stem commands for radian frequency and Hertzian frequency:

w = [-4*2*pi/8:2*pi/8:3*2*pi/8]; % Radian discrete freq

f = [-0.5:1/8:3/8]; % Hertzian discrete freq

Hint: here are some more helpful Matlab statements:

n = 0:7; % time variable

x1n = [0 1 1 1 1 1 0 0]; % our 8-point signal

X1k = fftshift(fft(x1n)); % compute the centered DFT

X1kmag = abs(X1k); % magnitude of the centered DFT

X1karg = angle(X1k); % phase of the centered DFT

% plot centered DFT magnitude as a function of radian freq

w = [-4*2*pi/8:2*pi/8:3*2*pi/8]; % radian discrete freq

figure(1);

stem(w,X1kmag); ylim([0 6]);

title(’Centered DFT Magnitude’);

xlabel(’discrete radian frequency \omega’);

ylabel(’|X_1[\omega]|’);

3. As you saw in Problems 1 and 2, plotting the DFT magnitude and phase as functions
of radian frequency ω is a little bit inconvenient. In Problem 2, we wanted the x-axis
of these plots to go from −π to 3(2π/8). But what we got were plots from -4 to 3.
Matlab doesn’t like it when the first and last ticks on the x-axis are irrational numbers
like π.

Because of this, people often plot the DFT magnitude and phase using a normalized
radian frequency axis. The normalized frequency is given by ω/π. Then, −1 on the
normalized frequency axis corresponds to ω = −π and +1 on the normalized frequency
axis corresponds to ω = +π. This makes the Matlab plots turn out a little bit nicer.
Here are some Matlab statements that show you how to do this:

w = [-4*2*pi/8:2*pi/8:3*2*pi/8];

stem(w/pi,X1kmag);

xlabel(’\omega/\pi’);

Modify your Matlab code from Problem 2 to plot the centered DFT magnitude for
x1[n] as a function of normalized frequency (i.e., using normalized frequency on the
horizontal axis).
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It’s important for you to know about normalized frequency because the digital IIR
filter design routines in the Matlab Signal Processing Toolbox require you to specify
the passband and stopband edge frequencies in units of normalized frequency.

Now, as we said back on page 2, the finite-length signal x1[n] in (1) does not have a
DTFT X1(e

jω). But suppose that we make a new signal x̂1[n] by adding zeros to both sides
of x1[n] so that the new signal is defined for all n ∈ Z. In other words, we make the new
signal

x̂1[n] =

{
x1[n], 0 ≤ n ≤ 7,

0, otherwise.
(4)

Then x̂1[n] does have a DTFT X̂1(e
jω). The relationship between the 8-point DFT X1[k]

and the DTFT X̂1(e
jω) is that X1[k] is given by eight equally spaced samples of X̂1(e

jω)
going from ω = 0 to ω = 7(2π/8). The 8-point centered DFT of x1[n] is given by eight

equally spaced samples of X̂1(e
jω) going from ω = −π to ω = 3(2π/8).

To investigate this further, let’s compute the DTFT X̂1(e
jω). Unfortunately, x̂1[n] is not

in our DTFT Table on the course formula sheets. However, the signal

x̂0[n] =

{
1, |n| ≤ 2,
0, |n| > 2,

(5)

is in our DTFT Table. And x̂1[n] = x̂0[n − 3]. In other words, our signal x̂1[n] in (4) is a
time shifted version of x̂0[n] in (5) and the DTFT of x̂0[n] is in the table. According to the
table,

X̂0(e
jω) =

sin
(
5
2
ω
)

sin(ω/2)
. (6)

Applying the DTFT time shifting property, we get

X̂1(e
jω) = e−j3ωX̂0(e

jω) =
sin
(
5
2
ω
)

sin(ω/2)
e−j3ω. (7)

4. Consider the following Matlab code which plots the magnitude and phase of the DTFT
X̂1(e

jω) together with the magnitude and phase of the centered DFT of x1[n]:

%--------------------------------------------------------

% P4a

%

% Show that the DFT of the finite-length signal is given

% by samples of the DTFT of the zero-extended signal.

% - plot the DTFT magnitude of x1hat from -pi to pi.

% - plot the centered DFT magnitude of x_1[n] on the

8



% same graph.

% -plot the DTFT phase of x1hat from -pi to pi.

% - plot the centered DFT phase of x_1[n] on the same

% graph.

%

% Frequency vector for plotting the DTFT. Use 1000 points.

w = linspace(-pi,pi,1000);

% The DTFT was computed analytically (i.e., with paper and

% pencil - not by computer)

X1hat = sin(2.5*w)./sin(w/2) .* exp(-3*j*w);

X1hatmag = abs(X1hat);

X1hatarg = angle(X1hat);

% Now compute the 8-point DFT of the finite-length signal

x1n = [0 1 1 1 1 1 0 0]; % our 8-point signal

k = -4:3; % frequency index for the centered DFT

X1k = fftshift(fft(x1n));

X1kmag = abs(X1k);

X1karg = angle(X1k);

figure(1);

plot(w,X1hatmag,’-b’); % plot the DTFT magnitude

axis([-pi pi 0 6]);

hold on; % makes the next plot come out on the

% same graph

plot(k*2*pi/8,X1kmag,’ro’); % plot the centered DFT magnitude

hold off; % using a symbol, but no line

% and no stem.

title(’Magnitude of DTFT and centered 8-pt DFT’);

xlabel(’\omega’,’FontSize’,14);

ylabel(’$|\widehat X_1(e^{j\omega})|$, $|X_1[\omega]|$’,...

’Interpreter’,’latex’,’FontSize’,14);

legend(’DTFT’,’DFT’);

figure(2);

plot(w,X1hatarg,’-b’); % plot the DTFT phase

axis([-pi pi -4 5]);

hold on;

plot(k*2*pi/8,X1karg,’ro’); % plot the centered DFT phase

hold off;
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title(’Phase of DTFT and centered 8-pt DFT’);

xlabel(’\omega’,’FontSize’,14);

ylabel(’$\arg\widehat X_1(e^{j\omega})$, $\arg X_1[\omega]$’,...

’Interpreter’,’latex’,’FontSize’,14);

legend(’DTFT’,’DFT’);

(a) Type in this code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file.

(b) Note that if we add zeros to the right side of x1[n], then it will make the finite-

length signal and the DFT longer. But it will not change x̂1[n] and X̂1(e
jω). If,

for example, we change x1[n] to

x1n = [0 1 1 1 1 1 0 0 0 0 0 0];

then the length of both x1[n] and X1[k] are increased to N = 12. But x̂1[n] is still

given by (4) and X̂1(e
jω) is still given by (7).

This gives us a way to sample the DTFT X̂1(e
jω) with arbitrary density by using

zero padding to increase the length of x1[n].

Modify the Matlab code in Problem 4(a) to plot the magnitude and phase of the
DTFT together with the magnitude and phase of the centered DFT of x1[n] for a
length of N = 16. To do this, you must change three things in the program P4a.
First, you must increase the length of x1n to N = 16 by appending zeros to the
end of the signal. Second, you must change the DFT frequency index to go from
k = −8 to k = 7 instead of k = −4 to k = 3. Third, in the plot commands for
X1kmag and X1karg, you must change the DFT frequency vector from k*2*pi/8

to k*2*pi/16. You should also change the titles of the plots to reflect the fact
that it is now a 16-point DFT.

Okay, that’s it for Homework 6. But since you are thinking about the DFT right now,
here is some more information that will be very helpful in the upcoming Design Project. In
the Design Project, you will work with digital audio signals. The length N will be much
larger than here in Homework 6. In some cases it will be tens of thousands.

So, assume that N is an even positive integer (like 1024, for example). For an N -point
finite-length signal x[n] defined for 0 ≤ n ≤ N − 1, the N -point DFT is given by

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N , 0 ≤ k ≤ N − 1. (8)

If the values of the N -point signal x[n] are stored in the Matlab array xn, then the Matlab
statement
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Xk = fft(xn);

will place the N complex-valued DFT coefficients in the Matlab array Xk. As the Matlab
index ranges from 1 to N , the DFT frequency index k ranges from 0 to N − 1. The Matlab
array elements Xk(1) through Xk(N) contain the DFT coefficients X[0] through X[N − 1],
which are for radian digital frequencies going from ω = 0 to ω = (N − 1)2π

N
in steps of 2π

N
.

If N = 8, then everything is exactly as shown in the table on page 5.
However, it’s usually more intuitive to work with the centered DFT. The Matlab state-

ment

Xk = fftshift(fft(xn));

will again place the N complex-valued DFT coefficients in the Matlab array Xk. But this
time,

• the first half of the Matlab array, i.e., Matlab array elements Xk(1) through Xk(N/2),
will contain the DFT coefficients X[N/2] through X[N−1] which are for radian digital
frequencies going from ω = −π to ω = −2π

N
in steps of 2π

N
.

• the Matlab array element Xk(N/2 + 1) will contain the DFT DC coefficient X[0],
which is for radian digital frequency ω = 0.

• the last half of the Matlab array, i.e., Matlab array elements Xk(N/2 + 2) through
Xk(N), will contain the DFT coefficients X[1] through X[N/2−1] which are for radian
digital frequencies going from ω = 2π

N
to ω = π − 2π

N
in steps of 2π

N
.

In other words, in an N -point centered DFT array, the radian digital frequency goes from
−π to π − 2π

N
in steps of 2π

N
. If N = 8, then everything is exactly as shown in the second

table on page 6.

Discrete Hertzian frequency (i.e., cycles per sample instead of radians per sample) is
obtained by dividing the radian digital frequency ω by 2π. In an N -point centered DFT
array, the Hertzian digital frequency goes from −1

2
cycle per sample to 1

2
− 1

N
cycles per

sample in steps of 1
N

.
Normalized frequency is obtained by dividing the radian digital frequency ω by π. In an

N -point centered DFT array, the normalized frequency goes from −1 to 1− 2
N

in steps of 2
N

.

The N -point inverse DFT (IDFT) is given by

x[n] =
1

N

N−1∑
k=0

X[k]ej2πkn/N , 0 ≤ n ≤ N − 1. (9)

For an un-centered DFT array, the N -point IDFT can be computed using the Matlab state-
ments

Xk = fft(xn);

xn = ifft(Xk);
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The Matlab statements for a centered DFT array are:

Xk = fftshift(fft(xn));

xn = ifft(ifftshift(Xk));

A Final Note: The DFT is usually written using the special “shorthand” symbol

WN = e−j2π/N .

For any fixed value of N , WN is a constant. Notice that the symbol WN has the conjugation
operation built into it. In terms of WN , the DFT and IDFT equations (8) and (9) become

X[k] =
N−1∑
n=0

x[n]W kn
N , 0 ≤ k ≤ N − 1, (10)

and

x[n] =
1

N

N−1∑
k=0

X[k]W−kn
N , 0 ≤ n ≤ N − 1. (11)

Although this is the way that you will usually see the DFT written, we are not using the
“WN notation” in this assignment in the interest of simplicity.
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