
ECE 3793

Matlab Project 2

Spring 2017 Dr. Havlicek

DUE: 04/7/2017, 11:59 PM

What to Turn In:

Make one file that contains your solution for this assignment. It can be an MS WORD file
or a PDF file. Make sure to include your name in your turn-in file and add a title at the top
of the first page that says “ECE 3793” and “Matlab Project 2.” Number the problems and
paste in your Matlab code and the resulting command window output. Paste in the figures
and graphs and make sure to include answers for the discussion questions.

Submit your solution electronically on Canvas by uploading your turn-in file to

ECE-3793-001 > Assignments > Matlab 02

If you are using the Virtual Labs, make sure to save all your files before you log out!

The Assignment:

1. For two finite length discrete-time signals x[n] and h[n], you can compute the con-
volution y[n] = x[n] ∗ h[n] using the Matlab conv command.

The resulting Matlab array that holds the values of y[n] will always have a length equal
to the length of x[n] plus the length of h[n] minus one.

Note: a finite length signal that starts at n = n1 and ends at n = n2 has a length of
n2 − n1 + 1. For example, if the signal starts at n = 1 and ends at n = 4, then it has
a length of 4− 1 + 1 = 4.

Here is an example convolution problem: suppose that

x[n] = δ[n+ 1]− 2δ[n] + 3δ[n− 1]− 4δ[n− 2] + 2δ[n− 4] + δ[n− 5]

and

h[n] = 3δ[n] + 2δ[n− 1] + δ[n− 2]− 2δ[n− 3] + δ[n− 4]− 4δ[n− 6] + 3δ[n− 8].

Let’s use Matlab to compute and plot the convolution y[n] = x[n] ∗ h[n].

Note that the signal x[n] starts at n = −1 and ends at n = 5. So the length of x[n] is
5− (−1) + 1 = 7. Similarly, h[n] starts at n = 0 and ends at n = 8. So the length of
h[n] is 8 − 0 + 1 = 9. Therefore, conv will return the convolution result in an array
of length 7 + 9 − 1 = 15 (remember, the result returned by conv always has a length
equal to the length of x[n] plus the length of h[n] minus one).

1



Now, the index of a Matlab array always starts at 1. So the Matlab variable x(1) will
be equal to x[−1], the value of the input signal at n = −1. This means that we will
have to keep track of the time variable n for each signal ourselves. . . Matlab will not
do this for us.

Let’s think of the convolution this way:

y[n] =
∞∑

k=−∞

h[k]x[n− k].

The figures below show the starting and stopping values of k for the signals h[k], x[k],
x[n+ k], and x[n− k]:

h[k] x[k]

������������������
������������������
������������������

������������������
������������������
������������������

k

0 8

������������������
������������������
������������������

������������������
������������������
������������������

k

5−1

x[n+ k] x[n− k]

������������������
������������������
������������������

������������������
������������������
������������������

−1−n

k

n5−

������������������
������������������
������������������

������������������
������������������
������������������

n−5 n+1

k

From these figures, you can see that the first time y[n] can be nonzero is when n+1 = 0,
or n = −1. The last time that y[n] can be nonzero is when n − 5 = 8, or n = 13. So
y[n] starts at n = −1, ends at n = 13, and has a length of 13− (−1) + 1 = 15.

What we have figured out so far is that:

• h[n] starts at n = 0, ends at n = 8, and has length 9;

• x[n] starts at n = −1, ends at n = 5, and has length 7;

• y[n] starts at n = −1, ends at n = 13, and has length 15.

Remember: when you use the Matlab conv function, you have to keep track of these
things yourself.

Now consider the following Matlab code which computes the convolution and plots it:

%------------------------------------------------------

% P1a

%

% compute and plot a discrete convolution

%

h = [3 2 1 -2 1 0 -4 0 3]; % Impulse response

2



x = [1 -2 3 -4 0 2 1]; % Input signal

y = conv(x,h); % y[n] = x[n] * h[n]

subplot(3,1,1); % 3x1 array of graphs

stem([-1:5],x); % plot x[n]

title(’x[n]’);

xlabel(’n’);

ylabel(’x[n]’);

subplot(3,1,2); % make 2nd graph active

stem([0:8],h); % plot h[n]

title(’h[n]’);

xlabel(’n’);

ylabel(’h[n]’);

subplot(3,1,3); % make 3rd graph active

stem([-1:13],y); % plot y[n]

title(’y[n]’);

xlabel(’n’);

ylabel(’y[n]’);

(a) Type in this code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file.

(b) Modify this code to compute and plot the convolution of h[n] with the new input
signal

x[n] = 3δ[n− 3] + δ[n− 4]− 4δ[n− 6] + δ[n− 7]− 5δ[n− 8].

Make sure to briefly explain your calculations for the starting and stopping times
of y[n].

(c) Use Matlab to compute and plot the convolution y[n] = x[n] ∗ h[n] where

x[n] =

(
1

4

)n

(u[n]− u[n− 6])

and

h[n] =

(
1

2

)n

(u[n+ 3]− u[n− 3]) .

Explain your calculations for the starting and stopping times of y[n].

2. Now we’re going to use Matlab to help us work problem 4.26(a)(i) from the course
text (note that this problem was assigned as part of Homework 6). We are given an
LTI system with impulse response h(t) = e−4tu(t) and input x(t) = te−2tu(t). We are
asked to find the system output y(t).

From Table 4.2, we can write down immediately that

X(ω) =
1

(2 + jω)2

3



and

H(ω) =
1

4 + jω
.

So the Fourier transform of y(t) is given by

Y (ω) = X(ω)H(ω) =
1

(4 + jω)(2 + jω)2

=
1

(jω)3 + 8(jω)2 + 20jω + 16
. (1)

To invert Y (ω) and find y(t), we need to compute the partial fraction expansion

Y (ω) =
A

4 + jω
+

B

2 + jω
+

C

(2 + jω)2
. (2)

This is where Matlab can help. By considering the numerator and denominator of Y (ω)
in (1) to be polynomials in jω, we can use the Matlab residue function to compute
the partial fraction expansion as follows:

numer = [1];

denom = [1 8 20 16];

[r p k] = residue(numer,denom)

r =

0.2500

-0.2500

0.5000

p =

-4.0000

-2.0000

-2.0000

k =

[]

In the Matlab output, vector r gives the residues in the partial fraction expansion
(these are the numbers A, B, and C in (2)). Vector p gives the poles.

4



In cases where Y (ω) is an improper fraction, there will also be direct transmission
terms in the partial fraction expansion that will be given in the output vector k. But
since our Y (ω) is a proper fraction in this problem, we see that the output vector k is
returned as the null vector because we don’t have any direct transmission terms.

Thus, from the output of the Matlab residue function, we can write down the partial
fraction expansion for Y (ω):

Y (ω) =
1
4

jω + 4
−

1
4

jω + 2
+

1
2

(jω + 2)2

(note that this agrees with the solution to Homework 6). From Table 4.2, it is then
easy to write down the final expression for y(t):

y(t) =

[
1

4
e−4t − 1

4
e−2t +

1

2
te−2t

]
u(t).

(a) Use the Matlab residue function to work text problem 4.33 (all three parts).
Note: there is a direct transmission term in part (c). For that part, you should
get that

H(ω) = 2 +
−
√

2 + j
√

2

jω +
(√

2
2
− j

√
2
2

) +
−
√

2− j
√

2

jω +
(√

2
2

+ j
√
2
2

) .
(b) Use the Matlab residue function to work text problem 4.34(b).

You can also use the Matlab Symbolic Math Toolbox to compute Fourier transforms.
To do this, you need to declare your Matlab variables to be symbolic variables as shown
in the examples below. In the Symbolic Math Toolbox, the unit step function u(t) is
called heaviside(t) and the Dirac delta δ(t) is called dirac(t).

The Symbolic Math Toolbox also provides functions simplify and pretty that will
often make your answers look better.

The following Matlab session log gives an example where we set xt equal to the signal
e−2tu(t)+3δ(t), set Xw equal to the Fourier transform of this signal, and finally set xt2
equal to the inverse Fourier transform of Xw (which is the same as the original xt, of
course).

syms w t

xt = exp(-2*t)*heaviside(t) + 3*dirac(t)

xt =

3*dirac(t) + exp(-2*t)*heaviside(t)

5



Xw = fourier(xt,t,w)

Xw =

1/(w*i + 2) + 3

pretty(Xw)

1

------- + 3

2 + w i

xt2 = ifourier(Xw,w,t)

xt2 =

(6*pi*dirac(t) + 2*pi*exp(-2*t)*heaviside(t))/(2*pi)

xt2 = simplify(xt2)

xt2 =

3*dirac(t) + exp(-2*t)*heaviside(t)

Here is another example that shows how to work text problem 4.3(b) using symbolic
math:

syms t w

xt = 1 + cos(6*pi*t + pi/8)

xt =

cos(pi/8 + 6*pi*t) + 1

Xw = fourier(xt,t,w)

Xw =

pi*(dirac(w - 6*pi)*((2^(1/2) + 2)^(1/2)/2 + ((2 - 2^(1/2))^(1/2)*i)/2)

+ dirac(6*pi + w)*((2^(1/2) + 2)^(1/2)/2 - ((2 - 2^(1/2))^(1/2)*i)/2))

+ 2*pi*dirac(w)

6



3. Now it’s your turn: use the Matlab Symbolic Math Toolbox to work text problem
4.3(a).

4. To specify a shifted step function like u(t−2) in Matlab, you simply type heaviside(t-2).
The same syntax applies for a shifted Dirac delta like δ(t−2). Use the Symbolic Math
toolbox to work text problem 4.1(a).

5. Use Symbolic Math to work text problem 4.26(a)(iii). Note: if you have X(ω) in a
symbolic variable Xw and H(ω) in a symbolic variable Hw, then you can compute Y (ω)
using the Matlab syntax

Yw = Xw * Hw

7


