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ECE-3793-001 > Assignments > Matlab 03

If you are using the Virtual Labs, make sure to save all your files before you log out!

The Assignment:

In this project, you are going to learn some of the ways that Matlab can help you compute
and manipulate Laplace transforms.

1. In Matlab Project 2, you saw how the Matlab residue function can help you compute
partial fraction expansions for inverting Fourier transforms. The residue function can
be used in exactly the same way to compute partial fraction expansions for inverting
Laplace transforms.

To see how this works, let’s use reside to work problem 9.22(e) from the textbook.
We are given that

X(s) =
s+ 1

s2 + 5s+ 6
, −3 < Re {s} < −2.

Here is a Matlab session log that shows how to use residue to compute a partial
fraction expansion for X(s):

numer = [1 1];

denom = [1 5 6];

[r p k] = residue(numer,denom)

r =

1



2.0000

-1.0000

p =

-3.0000

-2.0000

k =

[]

In the output from residue, vector r gives the residues of the partial fraction expansion
and vector p gives the poles. Since X(s) is a proper fraction in this case (the order of
the numerator is strictly less than the order of the denominator), residue returns a
null vector for the direct transmission term k. From the [r p k] values returned by
residue, we can write down the partial fraction expansion as follows:

X(s) =
2

s+ 3
− 1

s+ 2
. (1)

However, to find x(t) we also need to know the ROC for each term on the right-hand
side of (1). Since the given ROC of X(s) is a vertical strip, we know that the signal
x(t) must be two-sided. Therefore, one of the terms on the right-hand side of (1) must
have a ROC that is a right half-plane and the other one must have a ROC that is a
left half-plane. Moreover, these two ROC’s must intersect to give the ROC of X(s),
which is −3 < Re {s} < −2.

The first term on the right-hand side of (1) has a pole at s = −3, so it’s ROC could
be Re {s} > −3 or Re {s} < −3. The second term has a pole at s = −2. So it’s ROC
could be Re {s} > −2 or Re {s} < −2. Therefore, the ROC’s for the individual terms
in (1) must be given by

X(s) =
2

s+ 3︸ ︷︷ ︸
Re{s}>−3

− 1

s+ 2︸ ︷︷ ︸
Re{s}<−2

.

Using Table 9.2, we then obtain

h(t) = 2e−3tu(t) + e−2tu(−t).

(a) Use the Matlab residue function to work text problem 9.22(d).
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(b) Use the Matlab residue function to find h3(t) for H3(s) as given in text prob-
lem 9.10(c). Note: this problem has a direct transmission term and also has
a repeated pole of multiplicity two at s = −1. To handle this correctly, you
should type help residue at the Matlab command prompt and carefully read
the resulting documentation. From the [r p k] values returned by residue, you
should get the following expression for your partial fraction expansion:

H3(s) = 1− 2

s+ 1
+

1

(s+ 1)2
, Re {s} > −1.

2. In Problem 1, we used residue to compute partial fraction expansions for rational
Laplace transforms where the numerator and denominator where polynomials in s. To
do this, we had to give residue one input vector containing the coefficients of the
numerator polynomial (we called it numer) and another input vector containing the
coefficients of the denominator polynomial (we called it denom).

This can be a bit inconvenient in some cases. For example, look at text problem 9.7
for a moment. If we wanted to use residue to compute a partial fraction expansion
in problem 9.7, then we would have to multiply out the denominator. That would be
a pain!

In fact, given a transfer function H(s), you know that we sometimes want to see it as
a ratio of two polynomials in s. That makes it easy to see the relationship between
H(s) and the system input-output equation. For example, in Problem 1(b) above you
had H3(s) from text problem 9.10(c):

H3(s) =
s2

s2 + 2s+ 1
=
Y3(s)

X3(s)
.

Cross multiplying, we get

s2Y3(s) + 2sY3(s) + Y3(s) = s2X3(s). (2)

The input-output equation then follows immediately if we apply the inverse Laplace
transform to both sides of (2):

y′′3(t) + 2y′3(t) + y3(t) = x′′3(t).

But we also sometimes want to see the numerator and denominator polynomials of
H(s) factored into a product of terms of the form (s − a). That makes it easy to see
the poles and zeros, which is important because they tell us a lot about the system. If
we have to do a partial fraction expansion by hand, then, as you know, we also need
the denominator to be in a factored form.

Thus, given a rational Laplace transform, we generally need to be able to go back
and forth between the factored form and the “multiplied out” form of the numerator
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and denominator polynomials. Matlab provides transfer function and zero-pole-gain
system models to make this easier.

Here are brief descriptions of the relevant Matlab functions for doing this:

• To create a transfer function system model from vectors containing the coeffi-
cients of the numerator and denominator polynomials, use the Matlab statement
H = tf(numer,denom);. Here, numer is a vector containing the numerator poly-
nomial coefficients and denom is a vector containing the denominator polynomial
coefficients. A transfer function system model is returned in H. If you omit the
semicolon at the end of the statement, then the transfer function will be printed to
the Matlab command window with the numerator and denominator polynomials
multiplied out.

• To create a zero-pole-gain system model from vectors containing the roots of
the numerator and denominator polynomials, use the Matlab statement H =

zpk(z,p,g);. Here, z is a vector containing the zeros of the transfer function
(the roots of the numerator polynomial), p is a vector containing the poles of the
transfer function (the roots of the denominator polynomial), and g is a scalar that
specifies the gain of the transfer function (see the notes below). A zero-pole-gain
system model is returned in H. If you omit the semicolon at the end of the state-
ment, then the transfer function will be printed to the Matlab command window
with the numerator and denominator polynomials in factored form.

Note: the locations of the poles and zeros specify a transfer function H(s) up to a
constant gain factor. For example, if it is given that H(s) has a zero at s = 1 and a
pole at s = −1, then we know that

H(s) =
s− 1

s+ 1
× (a constant). (3)

The constant in (3) is the scalar g in the Matlab function call H = zpk(z,p,g). So, if

H(s) =
2(s− 1)

s+ 1
,

then we need to call zpk with g = 2. If

H(s) =
s− 1

s+ 1
,

then we need to call zpk with g = 1.

Important Note: in the Matlab documentation for the residue function, the variable
k is used for the vector of direct transmission terms, as in

[r p k] = residue(numer,denom).

4



But in the Matlab documentation for the zpk function, the variable k is used in a
different way for the scalar gain, as in

H = zpk(z,p,k).

These two k’s are not the same! To avoid confusion, I am using g instead of k for
the scalar gain in calls to the zpk function, as in the calls H = zpk(z,p,g) shown on
the previous page.

The Matlab functions tf and zpk can also be used to switch back and forth between the
“multiplied out” and “factored” forms of the numerator and denominator polynomials.
Here is a brief explanation of how to do this:

• If you have a zero-pole-gain system model H1 that has the numerator and de-
nominator polynomials in factored form, then you can switch to the “multiplied
out” form with the Matlab statement H2 = tf(H1); This creates a new transfer
function system model H2 that has the numerator and denominator polynomials
multiplied out. As before, if you omit the semicolon at the end of the statement
then the new transfer function H2 will be printed to the Matlab command window.

• If you have a transfer function system model H2 that has the numerator and
denominator polynomials in “multiplied out” form, then you can switch to the
factored form with the Matlab statement H3 = zpk(H2); This creates a new zero-
pole-gain system model H3 that has the numerator and denominator polynomials
in factored form. As before, if you omit the semicolon at the end of the statement
then the new zero-pole-gain model H3 will be printed to the Matlab command
window.

So far in Problem 2, we have seen that that the Matlab tf function can be used to
create a “multiplied out” transfer function system model from vectors of numerator
and denominator coefficients like this: H = tf(numer,denom). Then we saw that tf

can also be used to switch from a “factored form” of the numerator and denominator
to a “multiplied out” form like this: H2 = tf(H1).

We saw that the Matlab zpk function can be used to create a factored model from
vectors of zeros and poles (and a scalar gain) like this: H = zpk(z,p,g). Then we saw
that zpk can also be used to switch from a “multiplied out” form of the numerator and
denominator to a factored form like this: H3 = zpk(H2).

Thus, one of the useful things that tf and zpk can do is turn vectors of coefficients or
vectors of poles and zeros into system models.

But sometimes we need to “go the other way.” That is, sometimes we need to turn
system models into vectors of numerator and denominator coefficients or into vectors
of poles and zeros. Matlab provides functions for doing this.
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If you have a system model H (either a transfer function system model that has the
numerator and denominator “multiplied out” or a zero-pole gain system model that
has the numerator and denominator in factored form), then

• you can obtain vectors of the numerator and denominator polynomial coefficients
like this: [numer,denom] = tfdata(H,’v’);

• you can obtain a vector of the zeros (the roots of the numerator polynomial) like
this: z = zero(H);

• you can obtain a vector of the poles (the roots of the denominator polynomial)
like this: p = pole(H);

• alternatively, you can obtain vectors of the poles and zeros with a single call like
this: [p z] = pzmap(H);

Finally, here are a few more useful Matlab commands:

• You can call pzmap in a different way to convert vectors of numerator and denom-
inator coefficients into vectors of poles and zeros like this:
[p z] = pzmap(numer,denom);

• If you call pzmap without any left-hand arguments, then it will make a pole-zero
plot in the current figure window. To make a pole-zero plot from vectors of nu-
merator and denominator coefficients, you call it like this: pzmap(numer,denom).
To make a pole-zero plot from a system model H, you call it like this: pzmap(H).

• If you have vectors of numerator and denominator coefficients, then you can print
out the transfer function to the Matlab command window without making a sys-
tem model like this: printsys(numer,denom);

• If you have a system model H, and if the impulse response is right-sided so that
the ROC of H(s) is a right half-plane, then you can determine whether or not the
system is stable with the Matlab command isstable(H); The function isstable

returns the logical value “1” (true) if the system is stable, i.e., if all the poles of
H(s) are in the left half-plane. Otherwise, isstable returns the logical value “0”
(false). It is important for you to remember that isstable assumes that the
ROC is the right half-plane to the right of the rightmost pole! You cannot use it
if the ROC is a left half-plane or a strip.

We have covered a lot of new material so far in Problem 2! But now it’s finally time
to try these things out and see how they really work. Consider a transfer function

H(s) =
2(s+ 1)(s− 2)

(s+ 2)(s+ 3)(s− 1)
, Re {s} > 1.

From this expression, several things are immediately clear:

• H(s) has zeros at s = −1 and s = 2.
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• H(s) has poles at s = −2, s = −3, and s = 1.

• The gain is given by g = 2 (this is useful for calling zpk).

• The given ROC is Re {s} > 1. So, the ROC does not include the jω-axis. This
means that the system is unstable.

• Because the ROC is right-sided, we know that h(t) is right-sided. Because there
is no term e−st0 in the transfer function, we also know that h(t) starts at zero (see
the Laplace transform time shifting property in Table 9.1 of the text or in the
formula sheet for Test 2). Together, these two facts mean that h(t) = 0 ∀ t < 0.
Therefore, the system is causal.

Here is some Matlab code that uses this system to illustrate the Matlab functions tf,
zpk, zero, pole, tfdata, isstable, printsys, and pzmap that we have just learned
about:

%---------------------------------------------------

% P2a

%

% Use the transfer function

%

% 2(s+1)(s-2)

% H(s) = --------------- , Re{s} > 1

% (s+2)(s+3)(s-1)

%

% to illustrate the Matlab functions tf, zpk, zero,

% pole, tfdata, isstable, printsys, and pzmap.

%

clear;

z = [-1 2]; % zeros (roots of numerator)

p = [-2 -3 1]; % poles (roots of denominator)

g = 2; % transfer function gain

H1 = zpk(z,p,g) % zero-pole-gain system model

H2 = tf(H1) % convert to transfer function

% system model

%

% Get the numerator and denominator polynomial coefficients

%

[numer,denom] = tfdata(H1,’v’)

%

% Do it again with the other model

%

[numer,denom] = tfdata(H2,’v’)

%
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% Compute a transfer function system model

% from the numer and denom coefficients

%

H3 = tf(numer,denom) % H3 is the same as H1

%

% Convert to zero-pole-gain system model

%

H4 = zpk(H3) % H4 is the same as H1

%

% Use the numer and denom coefficients to

% print the transfer function to the

% Matlab command window

%

printsys(numer,denom)

%

% Use the pole function to get the poles

% from system models H1 and H2

%

p = pole(H1)

p = pole(H2) % same result as the line above

%

% Use the zero function to get the zeros

% from system models H1 and H2

%

z = zero(H1)

z = zero(H2) % same result as the line above

%

% Use pzmap to get the poles and zeros

%

[p z] = pzmap(H1)

[p z] = pzmap(H2) % same result as the line above

%

% Generate a pole-zero plot in three different ways

%

figure(1); pzmap(H1);

figure(2); pzmap(H2);

figure(3); pzmap(numer,denom);

%

% Use isstable to show that the system is unstable

%

isstable(H1)

%
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% Use residue to compute a partial fraction

% expansion. Notice that we don’t

% have to multiply out the denominator by hand.

%

[r p k] = residue(numer,denom)

%

% Let’s see what variables we have:

%

whos

(a) Type in the code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file. Don’t forget to include the pole-zero plots in
your turn-in file.

(b) Use the [r p k] values returned by residue to find the impulse response h(t).

(c) The system in problem 9.40 of the textbook has input-output relation

y′′′(t) + 6y′′(t) + 11y′(t) + 6y(t) = x(t).

Assume that this system is causal and use the Laplace transform to find the
transfer function H(s) by hand. Write Matlab code similar to P2a above to do
the following:

• use tf to compute a transfer function system model H1;

• use zpk to convert the transfer function system model to a zero-pole-gain
system model H2;

• use pzmap to produce a pole-zero plot;

• use pole to find the poles;

• use isstable to determine if the system is stable;

• use residue to compute a partial fraction expansion and find the impulse
response h(t). Hint: because the system is causal, the ROC must be the
right half-plane to the right of the rightmost pole.

3. There is an alternate way to use the Matlab tf function to create transfer function
system models. For the alternate way, you use the statement s = tf(’s’); to make
s a transfer function system model. Then, you can use expressions like

H = s / (s^2 + 2*s + 10);

to create more transfer function models. Similarly, there is an alternate way to use the
Matlab zpk function to create zero-pole-gain models. For the alternate way, you use
the statement s = zpk(’s’); to make s a zero-pole-gain system model. Then, you
can use expressions like

H = -2*s / ((s-2)*(s^2 - 2*s + 2));
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to create more zero-pole-gain models.

Note: if the numerator and/or denominator have any complex roots, then zpk will
combine them into quadratic factors with real coefficients wherever possible. This
means that the expression for H(s) that is printed to the Matlab command window
will not be in a fully factored form. However, you can still use pole and zero or pzmap
to find all of the roots of the numerator and denominator.

Here is some example Matlab code that uses this alternate way to call zpk in order to
find the poles and zeros of the transfer function H(s) in text problem 9.38 and generate
a pole-zero plot:

%---------------------------------------------------

% P3a

%

% Use zpk, pole, zero, and pzmap to find the poles

% and zeros and generate a pole-zero plot for the

% Laplace transform H(s) in text problem 9.38.

%

clear;

s = zpk(’s’);

H = 1 / ((s^2 - s + 1)*(s^2 + 2*s + 1))

H2 = tf(H)

p = pole(H)

z = zero(H)

pzmap(H);

And here is example Matlab code that uses the alternative way to call tf in order to
make a pole-zero plot and find the partial fraction expansion for the Laplace transform
X(s) in text problem 9.9:

%---------------------------------------------------

% P3b

%

% - Use tf to generate a pole-zero plot for the

% Laplace transform X(s) in text problem 9.9.

% = Use tfdata to get the numerator and denominator

% polynomial coefficient vectors.

% - Use residue to compute the partial fraction

% expansion.

%

clear;

s = tf(’s’);
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X = 2*(s+2)/(s^2 + 7*s + 12)

X2 = zpk(X)

pzmap(X);

[numer,denom] = tfdata(X,’v’);

[r p k] = residue(numer,denom)

(a) Type in the example code P3a above and run it. You can type it in line-by-line
at the command prompt or you can create an m-file.

(b) Type in the example code P3b above and run it. You can type it in line-by-line
at the command prompt or you can create an m-file.

(c) Write similar Matlab code to make a pole-zero plot and use it to work text problem
9.7.

4. If H is a system model, then:

• the Matlab statement impulse(H) will plot the system impulse response assuming
that the ROC of H(s) is right-sided.

• the Matlab statement step(H) will plot the system step response, assuming that
the ROC of H(s) is right-sided.

• provided that the system is both causal and stable, the Matlab statement bode(H)
will generate a log-log plot of the frequency response magnitude in decibels (dB)
and a semi-log plot of the frequency response phase in degrees.

Consider the following Matlab code, which generates a pole-zero plot for the transfer
function H(s) in text problem 9.33 and plots the impulse response, step response, and
frequency response:

%-----------------------------------------------------------

% P4a

%

% For the transfer function H(s) in text problem 9.33,

% - make a pole-zero plot

% - plot the impulse response

% - plot the step response

% - plot the frequency response

%

clear;

s = tf(’s’);

H = (s+1)/(s^2 + 2*s + 2)

[p z] = pzmap(H) % print poles and zeros to the cmd window

figure(1); pzmap(H);

figure(2); impulse(H);
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figure(3); step(H);

figure(4); bode(H);

(a) Type in this code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file.

(b) Modify the code to generate similar plots for the transfer function H2(s) in text
problem 9.10(b).

5. If F and G are system models (transfer function and/or zero-pole-gain system models),
then:

• the Matlab statement H = series(F,G) will create a new system model H by
connecting systems F and G in series.

• the Matlab statement H = parallel(F,G) will create a new system model H by
connecting systems F and G in parallel.

• the Matlab statement H = feedback(F,G) will create a new system model H by
connecting the systems F and G in a negative feedback connection. This is the
“usual” connection where the summing node has a “+” on the input signal and
a “−” on the feedback signal. In case they both have “+”, then the call is H =

feedback(F,G,+1).

In the above, if F and G are both transfer function system models, then H will also be a
transfer function system model. If either F or G is a zero-pole-gain model, then H will
generally be a zero-pole-gain model. Of course, as we already saw in Problems 2 and
3, you can always use tf and zpk to convert between model types.

Consider the following Matlab code which solves text problem 9.17. The system block
diagram is given in Fig. P9.17 on page 724 of the text. In the figure, note that there
are two feedback systems connected in parallel. However, in each feedback system, the
feedback path enters the summing note without a “−” sign. This means that we will
be calling feedback with the third argument “+1” as mentioned above.

%---------------------------------------------------------------

% P5a

%

% Work text problem 9.17.

% - the system block diagram is given in Fig. P9.17 on p. 724.

% - The figure involves four LTI system blocks. They will

% be called H1 through H4, from top to bottom.

% - The overall transfer function will be called H.

% - Note: because the feedback paths enter the summing nodes

% without a "-" sign, we will have to use the "+1" form

% of the Matlab feedback command.
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% - The last statement of this code will print out the

% final transfer function H(s) to the Matlab command

% window.

% - From this, the differential equation relating the input

% x(t) and output y(t) can simply be written down.

%

clear;

s = tf(’s’);

H1 = 2/s;

numerH2 = -4; % vector syntax not needed because it is a scalar

denomH2 = 1; % but to call tf we do need a denominator

H2 = tf(numerH2,denomH2);

H3 = tf(1/s);

numerH4 = -2;

denomH4 = 1;

H4 = tf(numerH4,denomH4);

H = parallel(feedback(H1,H2,+1),feedback(H3,H4,+1))

(a) Type in this code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file.

(b) Use the command window output from the last Matlab statement to complete
the problem by giving the differential equation that relates the system input x(t)
to the output y(t). Hint: use the fact that H(s) = Y (s)/X(s) and cross multiply.

6. Matlab provides a function lsim to simulate an LTI system. If:

• H is a system model,

• t is a vector of times, and

• x is a vector containing samples of the input signal taken at the times in t,

then the statement y = lsim(H,x,t); will simulate the system. The vector y will be
filled with samples of the output signal taken at the times in t.

The following Matlab code simulates a system with transfer function

H(s) =
2s2 + s+ 4

s3 + 2s2 + 6s+ 5
, Re {s} > −1

2

and plots the output for two different input signals.

• The first input signal x1(t) is a periodic square wave that starts at time t = 0 sec
and ends at time t = 25 sec. The period is 4 sec and the square wave is sampled
100 times per second. The Matlab gensig command is used to make this signal.
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• The second input signal is x2(t) = e−tu(t). This signal also starts at t = 0 sec,
ends at t = 25 sec, and is sampled 100 times per second.

%---------------------------------------------------------------

% P6a

%

% Use lsim to simulate an LTI system for two different input

% signals.

%

close all; % close any open figure windows

clear;

%

% Make the system model

%

numer = [2 1 4];

denom = [1 2 6 5];

H = tf(numer,denom);

%

% Make input x1 a periodic square wave

%

[x1,t1] = gensig(’square’,4,25,0.01);

%

% Simulate system and plot the output signal

%

y1 = lsim(H,x1,t1);

figure(1);

plot(t1,y1);

title(’Output Signal y_1(t)’);

xlabel(’Time (seconds)’);

ylabel(’y_1(t)’);

%

% Make input x2 a one-sided decaying exponential

%

t2 = 0:0.01:25;

x2 = exp(-t2);

%

% Simulate system and plot the output signal

%

y2 = lsim(H,x2,t2);

figure(2);

plot(t2,y2);

title(’Output Signal y_2(t)’);
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xlabel(’Time (seconds)’);

ylabel(’y_2(t)’);

(a) Type in this code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file.

(b) Modify the code to simulate the system and plot the output for a periodic pulse
input signal x3(t) that starts at t = 0 sec, ends at t = 25 sec, has period 4 sec,
and is sampled 100 times per second. Use the gensig command to make x3(t).

7. Consider the causal LTI system block diagram shown below:

G (s)
1

=
s+2

s+1
G (s)

2
=

500s2
1

) (x t ) (y t

Write Matlab code to do the following:

• use tf and series to find the overall transfer function H(s).

• use pole to find the poles.

• use pzmap to generate a pole-zero plot.

• use isstable to determine if the system is stable.

• use impulse to plot the impulse response.

• use lsim to find and plot the output y(t) when the input is given by

x(t) = e−t cos (5πt)u(t).

Run the simulation from t = 0 to t = 5 sec with a resolution of 1 msec (use t =

0:0.001:5; for your vector of sampling times).

8. Consider the causal LTI system block diagram shown below. Note: it is the same as
the system in Problem 7, but with a negative feedback loop added.

) (y tG (s)
2

=
500s2

1
) (x t G (s)

1
=

s+2

s+1

1

+

Σ

Write Matlab code to do the following:
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• use tf, series, and feedback to find the overall transfer function H(s).

• use pole to find the poles.

• use pzmap to generate a pole-zero plot.

• use isstable to determine if the system is stable.

• use impulse to plot the impulse response.

• use bode to plot the frequency response.

• use lsim to find and plot the output y(t) when the input is given by

x(t) = e−
t

10000 cos
( π

500
t
)
u(t).

Run the simulation from t = 0 to t = 20, 000 sec with a resolution of 1 µsec (use
t = 0:0.01:20000; for your vector of sampling times).

9. The Matlab symbolic math toolbox provides functions laplace and ilaplace for
computing forward and reverse Laplace transforms. It’s important for you to realize
that laplace and ilaplace implement the unilateral transform

Xu(s) =

∫ ∞
0−

x(t) e−st dt,

not the bilateral transform. In particular, laplace assumes that all signals are zero
for t < 0. Similarly, for a signal that starts at t = 0, the result returned by ilaplace

will omit the unit step function u(t). These important ideas are illustrated in the
following Matlab examples:

>> syms s t;

>> x1t = exp(-2*t)*heaviside(t); % x1t and x2t are the SAME as far as

>> x2t = exp(-2*t); % laplace is concerned!

>> x3t = exp(-2*(t-3))*heaviside(t-3); % but x3t is DIFFERENT

>> X1s = laplace(x1t)

X1s =

1/(s + 2)

>> X2s = laplace(x2t)

X2s =

1/(s + 2) % the SAME as X1s !
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>> X3s = laplace(x3t)

X3s =

exp(-3*s)/(s + 2)

>> x1t_b = ilaplace(X1s)

x1t_b =

% note that the unit step function

exp(-2*t) % is OMITTED!

>> x2t_b = ilaplace(X2s)

x2t_b =

exp(-2*t) % unit step function OMITTED again

>> x3t_b = ilaplace(X3s)

x3t_b =

heaviside(t - 3)*exp(6 - 2*t)

Here are two more examples:

>> syms a s t w % ’a’ is a generic symbolic constant.

>> xt = exp(-a*t) * cos(w*t);

>> Xs = laplace(xt)

Xs =

(a + s)/((a + s)^2 + w^2)

>> pretty(Xs)

a + s

-------------

2 2

(a + s) + w
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>> x2t = dirac(t);

>> X2s = laplace(x2t,t,s)

X2s =

1

Now it’s your turn to try laplace and ilaplace.

(a) Use symbolic math to find the Laplace transform of the signal

x(t) = e−t sin(2t)u(t).

(b) Use symbolic math to work text problem 9.21(b).

(c) Use symbolic math to find the impulse response of the causal system H1(s) given
in text problem 9.10(a).

(d) Use symbolic math to find the impulse response of the causal system H2(s) given
in text problem 9.10(b).

(e) Use symbolic math to find the impulse response of the causal system H3(s) given
in text problem 9.10(c).

(f) Use symbolic math to work text problem 9.22(a).
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