
ECE 3793

Matlab Project 4

Spring 2017 Dr. Havlicek

DUE: 5/3/2017, 11:59 PM

What to Turn In:

Make one file that contains your solution for this assignment. It can be an MS WORD file
or a PDF file. For Problem 7, you must also upload your final filtered signal in a wave file
named filteredsig.wav. Make sure to include your name in your turn-in file and add a
title at the top of the first page that says “ECE 3793” and “Matlab Project 4.” Number the
problems and paste in your Matlab code and the resulting command window output. Paste
in the figures and graphs and make sure to include answers for the discussion questions.

Submit your solution electronically on Canvas by uploading your turn-in file and your wave
file to

ECE-3793-001 > Assignments > Matlab 04

If you are using the Virtual Labs, make sure to save all your files before you log out!

The Assignment:

In this project, we are going to work with discrete-time signals that have a finite length. To
make the mathematics work out right, it is very important that our finite-length signals will
always start at n = 0 and end at n = N − 1. So, an 8-point signal x[n] will have length
N = 8. It will be defined from n = 0 to n = 7. Outside of this range of n’s, the signal is not
defined. It’s important for you to understand that x[n] is not equal to zero for other values
of n; it does not even exist for other values of n.

We are also going to work with digital audio signals. We will make some simple audio
signals, play them through the sound card, and write them to wave files so that they can
be played by a media player like Windows Media Player. Then you will design a high-
performance digital filter to remove noise from a complex audio signal.

PART I: the DFT

Here is a simple example of an 8-point signal x1[n]:

n

0 2 3 4 5 6 71

1

We can write the signal x1[n] like this:

x1[n] = δ[n− 1] + δ[n− 2] + δ[n− 3] + δ[n− 4] + δ[n− 5], 0 ≤ n ≤ 7. (1)

In Matlab, you can represent this signal with a vector (array)

x1n = [0 1 1 1 1 1 0 0];

You must always remember that the first element of the Matlab array is x1n(1), but in
terms of the finite-length signal this is x1[0], which is for n = 0. Similarly, the last element
of the Matlab array is x1n(8), but this is really x1[7], corresponding to n = 7.

Because the signal x1[n] is defined only for 0 ≤ n ≤ 7 and not for all n ∈ Z, it does not
have a discrete-time Fourier transform X1(e

jω). But it does have an 8-point discrete Fourier
transform (DFT) X1[k]. Like x1[n], X1[k] also has length N = 8. It is defined for 0 ≤ k ≤ 7
and it takes complex values. If you want to graph it, you can graph the real part and the
imaginary part, or you can graph the magnitude and the angle (phase). Usually, we graph
the magnitude and the phase.

The 8-point DFT X1[k] is given by

X1[k] =
7∑

n=0

x1[n]e−j2πkn/8, 0 ≤ k ≤ 7. (2)

It gives us a way to write an 8-point signal like x1[n] as a sum of the eight DFT basis functions

ej0
2π
8
n, ej1

2π
8
n, ej2

2π
8
n, ej3

2π
8
n, ej4

2π
8
n, ej5

2π
8
n, ej6

2π
8
n, and ej7

2π
8
n. Notice that each one of these

basis functions is a complex sinusoid and their frequencies are given by k(2π/8) = kω0, where
ω0 = 2π/N and 0 ≤ k ≤ 7. As always, the transform (2) is the inner product (dot product)
between the signal x1[n] and the basis functions.

To compute the DFT of x1[n], we have to compute the complex number X1[k] for each
k from 0 to 7. So all together, we have to do the equation (2) eight times – once for each k.
For each time, the sum (2) requires eight complex multiply-add operations. So the overall
computational complexity is 64 complex multiply-add operations. More generally, for an
N -point signal the computational complexity is N2 complex multiply-add operations.

The fast Fourier Transform (FFT) is a family of fast algorithms that rearrange the
terms of the sum (2) in a tricky way that makes maximum re-use of partial products. This
reduces the computational complexity from N2 complex multiply-add operations to N log(N)
complex multiply-adds. For an 8-point signal, it reduces the complexity from 64 multiply-
adds to 40 multiply adds. For N = 4096, it reduces the complexity from about 16.8 million
multiply-adds to 49,152 multiply-adds.

Once you have used the DFT to compute the eight inner products X1[k] for k =
0, 1, 2, . . . , 7, then you can write the signal x1[n] by adding up the inner products times
the basis functions. This is called the inverse discrete Fourier transform (IDFT). It is given
by

x1[n] =
1

8

7∑
k=0

X1[k]ej2πkn/8, 0 ≤ n ≤ 7. (3)

2

Matlab provides a built-in function fft that uses the FFT algorithm to compute the DFT
in Eq. (2). Matlab also provides a built-in function ifft that uses the FFT algorithm to
compute the IDFT (3).

1. Consider the following Matlab code which computes the DFT of the signal x1[n] in (1)
and plots the DFT magnitude and phase as functions of k. The program also plots
the DFT magnitude as a function of the Matlab array index and as a function of the
radian digital frequency k(2π/8). Type in this code and run it. You can type it in
line-by-line at the command prompt or you can create an m-file. You can download
a copy of this code as an m-file from the “Files for Matlab 04” section of the course
page on canvas.ou.edu.

%--

% P1

%

% - Create and plot the signal x_1[n] as a function of n.

% - Compute the DFT X_1[k]. Plot the magnitude and phase

% as functions of k.

% - Plot the DFT magnitude as a function of the matlab

% array index.

% - Plot the DFT magnitude as a function of the discrete

% radian frequency w.

% - Compute and plot the IDFT.

%

n = 0:7; % time variable

x1n = [0 1 1 1 1 1 0 0]; % our 8-point signal

X1k = fft(x1n); % compute the DFT

X1kmag = abs(X1k); % magnitude of the DFT

X1karg = angle(X1k); % phase of the DFT

% plot the signal

figure(1);

stem(n,x1n);

axis([0 7 0 1.5]);

title(’Original Signal’);

xlabel(’n’);

ylabel(’x_1[n]’);

% plot DFT magnitude and phase as functions of k

k = 0:7; % frequency index

figure(2);

stem(k,X1kmag); ylim([0 6]);

3

title(’DFT Magnitude’);

xlabel(’k’);

ylabel(’|X_1[k]|’);

figure(3);

stem(k,X1karg);

title(’DFT Phase’);

xlabel(’k’);

ylabel(’arg(X_1[k])’);

% plot DFT magnitude as a function of Matlab index

Matlab_idx = [1:8]; % Matlab index

figure(4);

stem(Matlab_idx,X1kmag); ylim([0 6]);

title(’DFT Magnitude’);

xlabel(’Matlab index’);

ylabel(’|X_1[index]|’);

% plot DFT magnitude as a function of discrete frequency

% (radians per sample)

w = [0:2*pi/8:7*2*pi/8]; % discrete frequency

figure(5);

stem(w,X1kmag); ylim([0 6]);

title(’DFT Magnitude’); ylim([0 6]);

xlabel(’discrete radian frequency \omega’);

ylabel(’|X_1[\omega]|’);

% Compute and plot the IDFT

x2n = ifft(X1k);

figure(6);

stem(n,x2n);

axis([0 7 0 1.5]);

title(’IDFT’);

xlabel(’n’);

ylabel(’IDFT’);

4

People often refer to the eight numbers X1[k] as “the DFT coefficients” of the signal
x1[n]. Here is a table that shows, for each DFT coefficient X1[k], the Matlab array index,
the DFT frequency index k, the digital frequency ω in radians per sample, and the digital
frequency f in cycles per sample:

Matlab array index 1 2 3 4 5 6 7 8

DFT freq index k 0 1 2 3 4 5 6 7

ω, rad/sample 0(2π/8) 1(2π/8) 2(2π/8) 3(2π/8) 4(2π/8) 5(2π/8) 6(2π/8) 7(2π/8)

f , cycles/sample 0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8

Now we need to remember two important things about discrete-time complex sinusoids.
First, we only need frequencies from −π to π to make all the possible graphs. Second,
subtracting any integer multiple of 2π from the frequency does not change the graph.

In the table above, notice that the radian frequencies for the DFT coefficients with k = 5,
6, and 7 are all ≥ π. Subtracting 2π from the frequency for the k = 5 DFT coefficient, we
get 5(2π/8) − 8(2π/8) = −3(2π/8). This does not change the graph of the basis function
at all. So we can think of the k = 5 DFT coefficient as being for frequency +5(2π/8), or,
equivalently, as being for frequency −3(2π/8).

Similarly, we can think of the k = 6 DFT coefficient as being for frequency +6(2π/8) or
for frequency 6(2π/8)−8(2π/8) = −2(2π/8). And we can think of the k = 7 DFT coefficient
as being for frequency +7(2π/8) or for frequency −1(2π/8).

Finally, we can think of the k = 4 DFT coefficient as being for frequency +4(2π/8) or for
frequency 4(2π/8) − 8(2π/8) = −4(2π/8). Notice that this is the “N/2” coefficient, where
N = 8 is the length of the signal. People often refer to this DFT coefficient as being for
both of the frequencies ±4(2π/8).

So let’s draw the table again, but this time we will subtract 2π from the frequencies of
the k = 4, 5, 6, and 7 DFT coefficients. It’s important for you to remember that this does
not change anything. The signals ej5

2π
8
n and e−j3

2π
8
n have exactly the same graph. They are

just two different ways of writing the same DFT basis signal. So here’s the new table:

Matlab array index 1 2 3 4 5 6 7 8

DFT freq index k 0 1 2 3 4 5 6 7

ω, rad/sample 0(2π/8) 1(2π/8) 2(2π/8) 3(2π/8) ±4(2π/8) −3(2π/8) −2(2π/8) −1(2π/8)
f , cycles/sample 0/8 1/8 2/8 3/8 ±4/8 −3/8 −2/8 −1/8

From this new table, you can see that the DFT coefficients in the first half of the array are
for the positive frequencies, but the coefficients in the second half of the array are actually
for the negative frequencies.

So, when we look at a DFT array in practice, we usually swap the left and right sides of
the array so that the negative frequency coefficients are on the left, the zero frequency (DC)
coefficient is in the center, and the positive frequency coefficients are on the right.

5

Here is what the table looks like after we swap the left and right halves of the array:

NEW Matlab index 1 2 3 4 5 6 7 8

OLD Matlab index 5 6 7 8 1 2 3 4

DFT freq index k 4 5 6 7 0 1 2 3

ω, rad/sample ±4(2π/8) −3(2π/8) −2(2π/8) −1(2π/8) 0(2π/8) 1(2π/8) 2(2π/8) 3(2π/8)

f , cycles/sample ±4/8 −3/8 −2/8 −1/8 0/8 1/8 2/8 3/8

This is called the centered DFT. Matlab provides a built-in function fftshift to center
the DFT array for you. Matlab also provides a built-in function ifftshift to un-center it.
If you center a DFT, then you must always un-center it before you try to invert!

So, for example, if you wanted to compute the magnitude and phase of the centered DFT
and then invert, you could do it like this:

X1kshift = fftshift(fft(x1n));

X1kmag = abs(X1kshift);

X1karg = angle(X1kshift);

x2n = ifft(ifftshift(X1kshift));

2. Modify the Matlab code in Problem 1 to compute and plot the magnitude and phase
of the centered DFT for the signal x1[n] in (1). Plot the centered magnitude and phase
as functions of the radian frequency ω and of the Hertzian frequency f . Also compute
and plot the inverse DFT.

Hint: you may find the following Matlab statement helpful for making the “x-axis”
quantities to use in the plot command:

w = [-4*2*pi/8:2*pi/8:3*2*pi/8];

3. As you saw in Problems 1 and 2, plotting the DFT magnitude and phase as functions
of radian frequency ω is a little bit inconvenient. In Problem 2, we wanted the x-axis
of these plots to go from −π to 3(2π/8). But what we got were plots from -4 to 3.
Matlab doesn’t like it when the first and last ticks on the x-axis are irrational numbers
like π.

Because of this, people often plot the DFT magnitude and phase using a normalized
radian frequency axis. The normalized frequency is given by ω/π. Then, −1 on the
normalized frequency axis corresponds to ω = −π and +1 on the normalized frequency
axis corresponds to ω = +π. This makes the Matlab plots turn out a little bit nicer.
Here are some Matlab statements that show you how to do this:

w = [-4*2*pi/8:2*pi/8:3*2*pi/8];

stem(w/pi,X1kmag);

xlabel(’\omega/\pi’);

6

Modify your Matlab code from Problem 2 to plot the centered DFT magnitude for
x1[n] using a normalized frequency axis.

It’s important for you to know about normalized frequency because the digital IIR
filter design routines in the Matlab Signal Processing Toolbox require you to specify
the passband and stopband edge frequencies in units of normalized frequency.

Now, as we said back near the top of page 2, the finite-length signal x1[n] in (1) does
not have a DTFT X1(e

jω). But suppose that we make a new signal x̂1[n] by adding zeros to
both sides of x1[n] so that the new signal is defined for all n ∈ Z. In other words, we make
the new signal

x̂1[n] =

{
x1[n], 0 ≤ n ≤ 7,

0, otherwise.
(4)

Then x̂1[n] does have a DTFT X̂1(e
jω). The relationship between the 8-point DFT X1[k]

and the DTFT X̂1(e
jω) is that X1[k] is given by eight equally spaced samples of X̂1(e

jω)
going from ω = 0 to ω = 7(2π/8). The 8-point centered DFT of x1[n] is given by eight

equally spaced samples of X̂1(e
jω) going from ω = −π to ω = 3(2π/8).

To investigate this further, let’s compute the DTFT X̂1(e
jω). Unfortunately, x̂1[n] is not

in Table 5.2. However, the signal

x̂0[n] =

{
1, |n| ≤ 2,
0, |n| > 2,

(5)

is in Table 5.2. And x̂1[n] = x̂0[n− 3]. According to the table,

X̂0(e
jω) =

sin
(
5
2
ω
)

sin(ω/2)
. (6)

Applying the DTFT time shifting property from Table 5.1, we get

X̂1(e
jω) = e−j3ωX̂0(e

jω) =
sin
(
5
2
ω
)

sin(ω/2)
e−j3ω. (7)

7

4. Consider the following Matlab code which plots the magnitude and phase of the DTFT
X̂1(e

jω) together with the magnitude and phase of the centered DFT of x1[n]:

%--

% P4a

%

% Show that the DFT is given by samples of the DTFT.

% - plot the DTFT magnitude of x1hat from -pi to pi.

% - plot the centered DFT magnitude of x_1[n] on the

% same graph.

% -plot the DTFT phase of x1hat from -pi to pi.

% - plot the centered DFT phase of x_1[n] on the same

% graph.

%

% Frequency vector for plotting the DTFT. Use 1000 points.

w = linspace(-pi,pi,1000);

% The DTFT was computed analytically

X1hat = sin(2.5*w)./sin(w/2) .* exp(-3*j*w);

X1hatmag = abs(X1hat);

X1hatarg = angle(X1hat);

% Now compute the 8-point DFT

x1n = [0 1 1 1 1 1 0 0]; % our 8-point signal

k = -4:3; % frequency index for the centered DFT

X1k = fftshift(fft(x1n));

X1kmag = abs(X1k);

X1karg = angle(X1k);

figure(1);

plot(w,X1hatmag,’-b’); % plot the DTFT magnitude

axis([-pi pi 0 6]);

hold on; % makes the next plot come out on the

% same graph

plot(k*2*pi/8,X1kmag,’ro’); % plot the centered DFT magnitude

hold off; % using a symbol, but no line

% and no stem.

title(’Magnitude of DTFT and centered 8-pt DFT’);

xlabel(’\omega’,’FontSize’,14);

ylabel(’$|\widehat X_1(e^{j\omega})|$, $|X_1[\omega]|$’,...

’Interpreter’,’latex’,’FontSize’,14);

8

legend(’DTFT’,’DFT’);

figure(2);

plot(w,X1hatarg,’-b’); % plot the DTFT phase

axis([-pi pi -4 5]);

hold on;

plot(k*2*pi/8,X1karg,’ro’); % plot the centered DFT phase

hold off;

title(’Phase of DTFT and centered 8-pt DFT’);

xlabel(’\omega’,’FontSize’,14);

ylabel(’$\arg\widehat X_1(e^{j\omega})$, $\arg X_1[\omega]$’,...

’Interpreter’,’latex’,’FontSize’,14);

legend(’DTFT’,’DFT’);

(a) Type in this code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file. You can download a copy of this code as an
m-file from the “Files for Matlab 04” section of the course page on canvas.ou.edu.

(b) Note that if we add zeros to the right side of x1[n], then it will make the finite-

length signal and the DFT longer. But it will not change x̂1[n] and X̂1(e
jω). If,

for example, we change x1[n] to

x1n = [0 1 1 1 1 1 0 0 0 0 0 0];

then the length of both x1[n] and X1[k] are increased to N = 12. But x̂1[n] is still

given by (4) and X̂1(e
jω) is still given by (7).

This gives us a way to sample the DTFT X̂1(e
jω) with arbitrary density by using

zero padding to increase the length of x1[n].

Modify the Matlab code in Problem 4(a) to plot the magnitude and phase of the
DTFT together with the magnitude and phase of the centered DFT of x1[n] for a
length of N = 16. To do this, you must change three things in the program P4a.
First, you must increase the length of x1n to N = 16 by appending zeros to the
end of the signal. Second, you must change the DFT frequency index to go from
k = −8 to k = 7 instead of k = −4 to k = 3. Third, in the plot commands for
X1kmag and X1karg, you must change the DFT frequency vector from k*2*pi/8

to k*2*pi/16. You should also change the titles of the plots to reflect the fact
that it is now a 16-point DFT.

Now assume that N is an even positive integer (like 1024, for example). For an N -point
finite-length signal x[n] defined for 0 ≤ n ≤ N − 1, the N -point DFT is given by

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N , 0 ≤ k ≤ N − 1. (8)

9

If the values of the N -point signal x[n] are stored in the Matlab array xn, then the Matlab
statement

Xk = fft(xn);

will place the N complex-valued DFT coefficients in the Matlab array Xk. As the Matlab
index ranges from 1 to N , the DFT frequency index k ranges from 0 to N − 1. The Matlab
array elements Xk(1) through Xk(N) contain the DFT coefficients X[0] through X[N − 1],
which are for radian digital frequencies going from ω = 0 to ω = (N − 1)2π

N
in steps of 2π

N
.

If N = 8, then everything is exactly as shown in the table on page 5.
However, it’s usually more intuitive to work with the centered DFT. The Matlab state-

ment

Xk = fftshift(fft(xn));

will again place the N complex-valued DFT coefficients in the Matlab array Xk. But this
time,

• the first half of the Matlab array, i.e., Matlab array elements Xk(1) through Xk(N/2),
will contain the DFT coefficients X[N/2] through X[N−1] which are for radian digital
frequencies going from ω = −π to ω = −2π

N
in steps of 2π

N
.

• the Matlab array element Xk(N/2 + 1) will contain the DFT DC coefficient X[0],
which is for radian digital frequency ω = 0.

• the last half of the Matlab array, i.e., Matlab array elements Xk(N/2 + 2) through
Xk(N), will contain the DFT coefficients X[1] through X[N/2−1] which are for radian
digital frequencies going from ω = 2π

N
to ω = π − 2π

N
in steps of 2π

N
.

In other words, in an N -point centered DFT array, the radian digital frequency goes from
−π to π − 2π

N
in steps of 2π

N
. If N = 8, then everything is exactly as shown in the second

table on page 5.
Discrete Hertzian frequency (cycles per sample) is obtained by dividing the radian digital

frequency ω (radians per sample) by 2π. In an N -point centered DFT array, the Hertzian
digital frequency goes from −1

2
cycle per sample to 1

2
− 1

N
cycles per sample in steps of 1

N
.

Normalized frequency is obtained by dividing the radian digital frequency ω by π. In an
N -point centered DFT array, the normalized frequency goes from −1 to 1− 2

N
in steps of 2

N
.

The N -point inverse DFT (IDFT) is given by

x[n] =
1

N

N−1∑
k=0

X[k]ej2πkn/N , 0 ≤ n ≤ N − 1. (9)

For an un-centered DFT array, the N -point IDFT can be computed using the Matlab state-
ments

10

Xk = fft(xn);

xn = ifft(Xk);

The Matlab statements for a centered DFT array are:

Xk = fftshift(fft(xn));

xn = ifft(ifftshift(Xk));

Note: The DFT is usually written using the special symbol

WN = e−j2π/N .

For any fixed value of N , WN is a constant. In terms of WN , the DFT and IDFT equations (8)
and (9) become

X[k] =
N−1∑
n=0

x[n]W kn
N , 0 ≤ k ≤ N − 1, (10)

and

x[n] =
1

N

N−1∑
k=0

X[k]W−kn
N , 0 ≤ n ≤ N − 1. (11)

Although this is the way that you will usually see the DFT written, we are not going to use
the “WN notation” in this assignment. It would only make things more complicated.

11

PART II: Digital Audio

Professional compact disc digital audio is sampled with a sampling frequency of Fs = 44.1
kHz. This means that there are 44,100 samples per second. The time interval between
samples is called the sampling period. It is given by Ts = 1/Fs ≈ 22.676 µsec. Although
professional compact disc audio signals are stereo and have two channels of audio data, in
this assignment we will only consider single-channel (mono) audio signals.

The audio samples are stored as 16-bit two’s complement integers. In high performance
professional applications, they are stored without compression. For computer processing,
the digital audio samples are usually stored in a wave file (.wav). Matlab provides a built-in
function audioread that can read the digital audio data in a wave file into a Matlab array.
It also provides a built-in function audiowrite that can write the digital audio data in a
Matlab array out to a wave file.

The Matlab statement

[x,Fs] = audioread(’test.wav’);

reads the digital audio signal contained in the file test.wav into the Matlab array x. The
sampling rate, which is stored in the wave file, is placed in the Matlab variable Fs. For
professional audio, it is always 44.1 kHz. When Matlab reads in the 16-bit two’s complement
integer audio samples, it converts them to double precision floating point numbers in the
range [−1, 1].

The Matlab statement

audiowrite(’test.wav’,x,Fs);

writes the digital audio data stored in the double precision floating point array x out to the
wave file test.wav in 16-bit two’s complement integer format. It is important for you to
make sure that the digital audio data in the array x is normalized to the range [−1, 1] before
you call audiowrite, since operations like filtering and adding signals together will generally
change the range. This can be done by placing the Matlab statement

x = x / max(abs(x));

just before the call to audiowrite.
The Matlab statement

sound(x,Fs,16);

will play the digital audio data in the array x through the sound card as 16-bit two’s com-
plement integers with a sampling frequency of Fs. As with audiowrite, it is important for
you to ensure that the data stored in x are normalized to the range [−1, 1] before you call
sound.

The Nyquist frequency is given by Fs/2 = 22.05 kHz. A/D and D/A conversion, i.e.,
sampling, maps the analog Nyquist frequency to the digital frequency ω = π radians per

12

sample. Thus, if the Matlab array x holds an N -point digital audio signal, then in the N -
point centered DFT array X = fftshift(fft(x)) the analog frequency goes from −Fs

2
to

Fs
2
− Fs

N
in steps of Fs

N
.

For practical digital audio signals, the magnitude of the centered DFT is usually plotted
in dB as 20 log10 |X[k]|. Note that this will make a numerical error if |X[k]| = 0. So, if there
are places k where |X[k]| = 0, you have to change it to a small nonzero number instead when
you compute the logarithm.

For a digital audio signal with a sampling rate of Fs Hz,

• to convert (Hertzian) analog frequency to radian digital frequency, multiply the analog
frequency by 2π

Fs
.

• to convert (Hertzian) analog frequency to Hertzian digital frequency, multiply the
analog frequency by 1

Fs
.

• to convert (Hertzian) analog frequency to normalized digital frequency, multiply the
analog frequency by 2

Fs
.

5. Recall that for professional compact disc digital audio, the sampling rate is Fs = 44.1
kHz. On a piano, the first “A note” that is located above middle C on the keyboard
has an analog frequency of 440 Hz. Consider the Matlab code below, which does the
following:

• Makes a two-second digital audio cosine signal with analog frequency 440 Hz (this
will require 44,100 × 2 = 88,200 samples). Such a signal is called a “pure tone.”

• Plays the 440 Hz pure tone through the sound card.

• Plots the centered DFT magnitude in dB as a function of Hertzian analog fre-
quency, radian digital frequency, and normalized digital frequency.

• Writes the signal to a wave file.

• Reads the signal back in from the wave file.

• Plays the read in signal through the sound card.

%--

% P5a

%

% Make a 2 second digital audio signal that contains a pure

% cosine tone with analog frequency 440 Hz.

% - play the signal through the sound card

% - plot the centered DFT magnitude in dB against

% Hertzian analog freq, radian digital freq,

% and normalized digital freq.

13

% - Write the signal to a wave file, read it back in, and

% play it through the sound card again.

%

Fs = 44100; % sampling frequency in Hz

N = Fs * 2; % length of the 2 sec signal

n = 0:N-1; % discrete time variable

f_analog = 440; % analog frequency in Hz

w_dig = 2*pi*f_analog/Fs; % radian digital frequency

x = cos(w_dig * n); % the signal

% Normalize samples to the range [-1,1]

% Not really needed here b/c cos is already in this range,

% but done anyway to illustrate how you normalize.

x = x / max(abs(x));

sound(x,Fs,16); % play it through sound card

X = fftshift(fft(x)); % centered DFT

Xmag = abs(X); % centered DFT magnitude

XmagdB = 20*log10(Xmag); % convert to dB

% Plot the centered magnitude against analog frequency

w = -pi:2*pi/N:pi-2*pi/N; % dig rad freq vector

f = w * Fs /(2*pi); % analog freq vector

figure(1);

plot(f,XmagdB);

xlim([-20000 20000]);

title(’Centered DFT Magnitude for 440 Hz Pure Tone’);

xlabel(’analog frequency, Hz’);

ylabel(’dB’);

% Plot the centered magnitude against radian digital freq

figure(2);

plot(w,XmagdB);

xlim([-pi pi]);

title(’Centered DFT Magnitude for 440 Hz Pure Tone’);

xlabel(’radian digital frequency \omega’);

ylabel(’dB’);

% Plot against normalized digital frequency

14

figure(3);

plot(w/pi,XmagdB);

xlim([-1 1]);

title(’Centered DFT Magnitude for 440 Hz Pure Tone’);

xlabel(’normalized digital frequency \omega/\pi’);

ylabel(’dB’);

% wait 3 seconds in case sound card is still busy

pause(3);

audiowrite(’A-440.wav’,x,Fs); % write to wave file

[x2,Fs] = audioread(’A-440.wav’); % read it back in

sound(x2,Fs,16); % play it again Sam!

(a) Type in this code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file. You can also download it from canvas.ou.edu.

(b) Modify the Matlab code to generate and play a cosine pure tone with an analog
frequency of 5 kHz.

Now we are going to do some filtering. The following Matlab code will design a lowpass
digital Butterworth filter:

Wp = 0.4;

Ws = 0.6;

Rp = 1;

Rs = 60;

[Nf, Wn] = buttord(Wp,Ws,Rp,Rs);

[num,den] = butter(Nf,Wn);

The frequency response magnitude is shown in Fig. 1 on the next page. The x-axis is in
normalized digital frequency and the y-axis is in dB. Since |H(ejω)| is even symmetric, we
normally plot it for the non-negative frequencies only.

The parameter Wp specifies the passband edge frequency. For this filter, we set Wp to a
normalized digital frequency of 0.4. This makes the passband go from DC to 0.4π rad/sample.
In the passband, |H(ejω)| ≈ 1 = 0 dB. The parameter Rp specifies the allowable passband
ripple, which is the amount that |H(ejω)| is allowed to deviate from 0 dB in the passband.
For this filter, we set Rp to 1. This means that |H(ejω)| has to be between -1 dB and +1 dB
everywhere in the passband.

The parameter Ws specifies the stopband edge frequency. For this filter, we set Ws to a
normalized digital frequency of 0.6. So the stopband goes from 0.6π rad/sample up to π
rad/sample. The parameter Rs specifies the minimum stopband attenuation. For this filter,
we set Rs to 60 dB. This means that everywhere in the stopband |H(ejω)| has to be below
-60 dB.

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
a

g
n

it
u

d
e

 (
d

B
)

Frequency Response Magnitude |H(e
jω

)|

Figure 1: Lowpass digital Butterworth filter frequency response.

The region between Wp and Ws is called the transition band. For this filter, the transition
band goes from 0.4 to 0.6 in units of normalized digital frequency, which is 0.4π to 0.6π
rad/sample.

The main features of the digital Butterworth filter are that it is maximally flat in the
passband, the passband is monotonic (there is no rippling), and the phase is approximately
linear in the passband.

The parameter Nf returned by buttord gives the filter order. This is the highest power
of e−jω that appears in the numerator or denominator of the frequency response H(ejω). It is
also the highest power of z−1 that appears in H(z). The parameter Wn gives the Butterworth
natural frequency, which is the point in the transition band where the frequency response
magnitude has dropped by 3 dB compared to the passband. For this filter, the order is 12.

The vectors num and den returned by butter contain the coefficients for the numerator
and denominator polynomials of H(ejω), which are the same as the numerator and denomi-
nator coefficients of the transfer function H(z).

The Matlab statement to run the filter is y = filter(num,den,x); where x is the input
signal and y is the output signal.

You can also design a highpass digital Butterworth filter like this:

Wp = 0.6;

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
a

g
n

it
u

d
e

 (
d

B
)

Frequency Magnitude |X(e
jω

)| (dB)

Figure 2: Highpass digital Butterworth filter frequency response.

Ws = 0.4;

Rp = 1;

Rs = 60;

[Nf, Wn] = buttord(Wp,Ws,Rp,Rs);

[num,den] = butter(Nf,Wn,’high’);

Notice that this time Wp > Ws. That is because the stopband is now on the left starting
at DC, followed by the transition band in the middle and the passband on the right. The
frequency response magnitude for this filter is shown in Fig. 2.

The parameter Wp again specifies the passband edge frequency, which we set to a normal-
ized digital frequency of 0.6. So the passband goes from 0.6π rad/sample to π rad/sample.
As before, we set Rp to 1, so |H(ejω)| has to be between -1 dB and +1 dB everywhere in the
passband.

We set the stopband edge frequency Ws to a normalized digital frequency of 0.4. So the
stopband goes from DC to 0.4π rad/sample. We set the minimum stopband attenuation
parameter Rs to 60, so |H(ejω)| is below -60 dB everywhere in the stopband.

The transition band lies between the stopband and the passband. For this filter, the
transition band goes from 0.4 to 0.6 in normalized digital frequency, which is 0.4π rad/sample
to 0.6π rad/sample in radian digital frequency.

17

For any given filtering problem, we usually want to use the smallest filter order Nf that we
can. A higher filter order means more delay, more complexity, and increased implementation
cost. It also means that the frequency response phase argH(ejω) will be more nonlinear,
which is undesirable for digital audio. Here are the factors that increase the filter order:

• for a given passband ripple Rp and minimum stopband attenuation Rs, making the
width of the transition band smaller will increase the order.

• for a given transition bandwidth, decreasing Rp or increasing Rs will increase the order.

Now, having Rp bigger than 1 dB could distort the signal in the filter passband, which is bad.
So, for a given filtering problem, we generally want to use the widest transition bandwidth
|Ws− Wp| and the smallest stopband attenuation Rs that will do the job.

6. Consider the Matlab code below, which does the following:

• Makes the signal x1 a 250 Hz pure tone that lasts for 4 sec.

• Plays x1 through the sound card.

• Makes the signal x2 a swept frequency chirp that goes from 1 kHz to 3 kHz. The
details of how I made the chirp signal are not important to you for this assignment.
But in case you are interested, here they are. Human hearing perceives the signal
x(t) = cos[ϕ(t)] as a tone with a time-varying frequency ϕ′(t). The quantity ϕ′(t)
is called the instantaneous frequency. For a chirp, ϕ′(t) changes linearly with
time, which means that the instantaneous phase ϕ(t) has to be quadratic in time.
A digital audio chirp signal is given by x[n] = cos(ϕ[n]), where the instantaneous
phase ϕ[n] is quadratic in n. So I set ϕ[n] = an2 + bn+ c. I set the initial phase
offset c to zero to get ϕ[n] = an2 + bn and ϕ′[n] = 2an + b. At n = 0, I wanted
the analog starting frequency of the chirp to be 1 kHz, which is a radian digital
frequency of ω1 = 2π × 1000/Fs. At n = 0, this gave me ϕ′[0] = b = ω1. At
n = N − 1, I wanted the analog ending frequency of the chirp to be 3 kHz, which
is a radian digital frequency of ω2 = 2π × 3000/Fs. At n = N − 1, this gave me
ϕ′[N − 1] = 2a(N − 1) + ω1 = ω2, or a = ω2−ω1

2(N−1) . So the desired digital chirp

signal is given by x[n] = cos(ϕ[n]) where ϕ[n] = ω2−ω1

2(N−1)n
2 + ω1n.

• Plays x2 through the sound card.

• Makes the signal x3 = x1 + x2.

• Normalizes x3 to the range [-1, 1] and plays it through the sound card.

• Designs a lowpass digital Butterworth filter to process the signal x3 by keeping
the 250 Hz pure tone but filtering out the chirp. I set the passband edge frequency
at 250 Hz, which is a radian digital frequency of 2π× 250/Fs. To get the value of
Wp for buttord, I divided this by π to convert it to normalized digital frequency.
I set the stopband edge frequency to the starting frequency of the chirp, which
is 1 kHz in analog frequency and 2π × 1000/Fs in radian digital frequency. To

18

get the value of Ws for buttord, I divided this by π to convert it to normalized
digital frequency. These values of Wp and Ws place the 250 Hz pure tone x1 in the
filter passband and the chirp signal x2 entirely in the filter stopband. I set the
maximum passband ripple Rp to 1 dB and the minimum stopband attenuation Rs

to 60 dB. The lowpass filtered signal is called y1.

• Calls the Matlab fvtool and freqz functions to display the filter frequency re-
sponse.

• Plays the lowpass filtered signal y1 through the sound card.

• Designs a highpass digital Butterworth filter to process the signal x3 by keeping
the chirp signal but filtering out the 250 Hz pure tone. I set the stopband edge
frequency at 250 Hz, which is a radian digital frequency of 2π × 250/Fs. For the
buttord parameter Ws, I divided this by π to convert it to normalized digital
frequency. This places the pure tone in the filter stopband. I set the passband
edge frequency at the starting frequency of the chirp, or 1 kHz, which is a radian
digital frequency of 2π × 1000/Fs. For the buttord parameter Wp, I divided this
by π to convert it to normalized digital frequency. This places the chirp signal
entirely in the filter passband. I used 1 dB for the maximum passband ripple
Rp and 60 dB for the minimum stopband attenuation Rs. The highpass filtered
signal is called y2.

• Adds the highpass filter to fvtool and calls freqz to plot the frequency response.

• Plays the highpass filtered signal y2 through the sound card.

%--

% P6a

%

% Make some digital audio signals and demonstrate filtering.

% All signals are 4 seconds in duration.

% - Make x1 a 250 Hz pure tone.

% - Play x1 through the sound card.

% - Make x2 a swept frequency chirp from 1 kHz to 3 kHz.

% - Play x2 through the sound card.

% - Make x3 = x1 + x2.

% - Play x3 through the sound card.

% - Apply a lowpass digital Butterworth filter to x3 to

% keep the pure tone and reject the chirp.

% - Play the filtered signal through the sound card.

% - Apply a highpass digital Butterworth filter to x3 to

% keep the chirp and reject the pure tone.

% - Play the filtered signal through the sound card.

%

19

Fs = 44100; % sampling frequency in Hz

N = Fs * 4; % length of the 4 sec signal

n = 0:N-1; % discrete time variable

% Make x1 a 250 Hz pure tone

f_analog = 250; % pure tone analog frequency

w_dig = 2*pi*f_analog/Fs; % radian digital frequency

x1 = cos(w_dig * n); % the pure tone

sound(x1,Fs,16); % play it through sound card

pause(5); % wait for sound card to clear

% Make x2 a chirp. Sweep analog freq from 1 kHz to 3 kHz

f_start_analog = 1000;

w_start_dig = 2*pi*f_start_analog/Fs;

f_stop_analog = 3000;

w_stop_dig = 2*pi*f_stop_analog/Fs;

phi = (w_stop_dig-w_start_dig)/(2*(N-1))*(n.*n) + w_start_dig*n;

x2 = cos(phi);

sound(x2,Fs,16); % play it through sound card

pause(5); % wait for sound card to clear

% Add the two signals

x3 = x1 + x2;

x3 = x3 / max(abs(x3)); % normalize the range to [-1,1]

sound(x3,Fs,16); % play it through sound card

pause(5); % wait for sound card to clear

% Use a lowpass digital Butterworth filter to keep the 250 Hz

% pure tone and reject the chirp.

Wp = w_dig/pi; % normalized passband edge freq

Ws = w_start_dig/pi; % normalized stopband edge freq

Rp = 1; % max passband ripple

Rs = 60; % min stopband attenuation

[Nf, Wn] = buttord(Wp,Ws,Rp,Rs); % design filter order

[num,den] = butter(Nf,Wn); % design the filter

h=fvtool(num,den); % show frequency response

figure(2);

freqz(num,den,1024); % plot frequency response

title(’Lowpass Frequency Response’);

y1 = filter(num,den,x3); % apply the filter

y1 = y1 / max(abs(y1)); % normalize filtered signal

sound(y1,Fs,16); % play it through sound card

20

pause(5); % wait for sound card to clear

% Use a highpass digital Butterworth filter to keep the chirp

% and reject the 250 Hz pure tone.

Ws = w_dig/pi; % normalized stopband edge freq

Wp = w_start_dig/pi; % normalized passband edge freq

Rp = 1; % max passband ripple

Rs = 60; % min stopband attenuation

[Nf, Wn] = buttord(Wp,Ws,Rp,Rs); % design filter order

[num2,den2] = butter(Nf,Wn,’high’); % design the filter

Hd = dfilt.df1(num2,den2); % make filter object

addfilter(h,Hd); % add filter 2 to fvtool

figure(3);

freqz(num2,den2,1024); % plot frequency response

title(’ Highpass Frequency Response’);

y2 = filter(num2,den2,x3); % apply the filter

y2 = y2 / max(abs(y2)); % normalize filtered signal

sound(y2,Fs,16); % play it through sound card

(a) Type in this code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file. You can download the m-file from canvas.ou.edu.

(b) Modify the Matlab code to do the following:

• Make x1 a four second cosine pure tone with analog frequency 1 kHz and play
it through the sound card.

• Make x2 a four second cosine pure tone with analog frequency 3 kHz and play
it through the sound card.

• Make x3 = x1 + x2 and play x3 through the sound card.

• Apply a lowpass digital Butterworth filter to x3 to keep the 1 kHz pure tone
but filter out the 3 kHz pure tone. You can use 1 dB for the maximum
passband ripple Rp and 60 dB for the minimum stopband attenuation Rs.
You will need to set the passband edge frequency ≥ 1 kHz. Note that this
is 2π × 1000/Fs in radian digital frequency. Divide that by π to get the
minimum value for the normalized digital passband edge frequency Wp. You
will need to set the stopband edge frequency ≤ 3 kHz. This is 2π × 3000/Fs
in radian digital frequency. Divide that by π to get the maximum value for
the normalized digital passband edge frequency Ws.

• Play the lowpass filtered signal through the sound card.

7. Get the wave files noisysig.wav and noisesamp.wav from our ECE 3793 page on
canvas.ou.edu. The file noisysig.wav contains a digital audio signal that has been
corrupted by additive noise. The digital audio signal in noisesamp.wav is a sample of

21

the noise. In this problem, you will design a digital Butterworth filter to remove the
noise.

(a) Use the Matlab audioread function to read each signal. Use Matlab to play
the noisy signal through the sound card. You can also play the file using any
wave-capable media player like Windows Media Player or VLC.

(b) Use the Matlab length function to find the length of each signal and plot the
centered DFT magnitude in dB as a function of normalized digital frequency.

(c) Design a lowpass digital Butterworth filter to remove the noise. You can use 1
dB for the maximum passband ripple Rp and 60 dB for the minimum stopband
attenuation Rs. Determine appropriate normalized digital frequency values for
the passband edge frequency Wp and stopband edge frequency Ws by analyzing
the centered DFT magnitude plots. Note that the centered DFT magnitude plot
for the file noisesamp.wav will show you the frequency spectrum for the noise
only, whereas the plot for the file noisysig.wav will show you the frequency
spectrum for the combined signal plus noise. You must design Wp and Ws so that
the filter order Nf is twelve or less.

(d) Apply your filter to remove the noise. Play the filtered signal through the sound
card and use the Matlab audiowrite function to save it to a wave file. Name this
wave file filteredsig.wav. Upload your filteredsig.wav file to canvas.ou.edu
along with your WORD or PDF solution file.

22

