REVIEW OF 1D LTI SYSTEMS

LTI

x[n] —»

— )| 7]

e Operator notation: y[n]=H{x[n]}

e In English, this is read: “y[n] is the output of
the system H when x[n]is the input.”



THE MOST IMPORTANT PROPERTIES

e Impulse response: when the input is 6[n], the output is A[n].
h[n]= H{5[n]}
e Homogeneity: if y[n]| = H{x[n]} and c is a constant, then
H{cx[n]} = cH{x[n]} =cy|n].

— In other words, the action of the system commutes with
multiplication by constants.

e Superposition: if y,[n] = H{x,[n]} and y,[n] = H{x,[n]}, then

H{xl[n]+x2[n]} = H{xl[n]} +H{x2[n]} =y n]+ y,[n].

— In other words, the action of the system commutes with
sums.



IMPORTANT LTI PROPERTIES

e Together, homogeneity and superposition are called
linearity.

e Together, they imply that the action of a linear system
commutes with linear combinations:

H{Clxl[n] + szz[n]} =y ln]+c,y,[n].

e Translation Invariance: if y[n] = H{x[n]} and n, is an integer
constant, then

H{x[n—n,J} = y[n—n,].

— In other words, the action of the system commutes with
(time) shifts.

— Also called time invariance or shift invariance.



1D Linea

r Convolution

As we have seen, any 1D discrete-time signal x[n] can be
written as a linear combination of the translates of o[n]:

x[n]=---+x[-1]0[n+1]+ x[0]0] n] + x[1]0][n —1] +- - -

Here, it is important to realize that x[-1], x[0], x[1], etc., are
constants; they are numbers.

So, if x|[n] is the input to an LTI system H, the output is

y[n]= H {x[n]]
=H{---+x[-1]0[n+1]
=t X[~ H L Sn+1

+x[0]0[n]+ x[1]o[n —1]+--+]
} + x[O]H{5[n]} + x[l]H{ﬁ[n — 1]} + -

=--+x[-1]a[n+1]+x

0]h[n]+x{1]A[n—1]+---



Y. Notation

e To save time and paper, we can write this exact same thing
using “capital Sigma do-loops”:

[e o]

x{n]= Y x[k]6[n—k]

fk=—o0

e This is called linear convolution; written y[n] = x[n] * h[n].
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Interpretation

e For each n, the output signal y[n] is a number.

e This number is given by the dot product of the input x[#]
with a flipped-and-shifted version of the impulse response:

[ee]

yinl= ) xklhln—k]1=(x{k], h~k —(=n)])

—
e Another way to think of it:
— Let the input be x[n] = 20[n] + 36[n-1] + 46[n-2].
— We can think of this as a sum of three input signals.
— For 20[n], the output is 2A[n].
— For 3¢6[n-1], the output is 3/[n-1].
— For 4¢6[n-2], the output is 44[n-2].

— The total output is the sum of these: that’s convolution.




More About 1D Linear Convolution

e Continuous-time version:

y(O)=x()*h(t)= [ x(O)h(t-)do.

e Computing 1D linear convolution in the transform domain:

Y(e")=xX(e")H (")
Y(z)=X(2)H(z)

discrete time

Y(Q)=X(L2)H (L)
Y(s)=X(s)H(s)

continuous time



An Important Idea

e Suppose x[n] = (34)", 0 < n <7, and zero otherwise.

e Leth[n]="%,0<n <7, and zero otherwise.

e Then, according to the convolution formula,

Mal= S akJh4— k]

f=—oo

* Notice that the product
x[k]h[4-k] is zero for k<0
because x[k] is zero there.

e Similarly, the product is zero
for k> 4 because h[4-k] is zero
there.

* In the linear convolution sum,
we get zero for the product in
places k where one of the

h[4-k]

signals “hangs over.” o



Now suppose we try to compute this same convolution by
multiplying the 8-point DFT’s X[k] and H[k].
Recall that, to the DFT, a finite-length signal is one period of

a periodic signal.

So the picture will be different this time!

Because the signals are now s
periodically extended, there will no

longer be zeros in the sum at places

where one of the signals “hangs over.”

The number we get for y[4] this way
will not be the same as what we got by
linear convolution on the last page.

0.5

It is something different — it is called
wraparound convolution.

More on this in a minute... 0

h|4-k], periodically extended

x[k], periodically extended

Q o]
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Finite-Length 1D Linear Convolution

e Let HbealD LTl causal 3-point weighted average filter with
h[n] :%5[n]+%5[n—1]+%§[n - 2].

e Let the input be the 4-point signal
x[n]=10[n]+20[n—1]+30[n—2]+40[n-3].

X[n] 9 4 h[n]

3 -

] |

I I |
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e Let N, =length(x[n]) =4 and N, = length(A[n]) = 3.
e The system output is the 1D linear convolution

oo

ylnl=x[n]*hln]= ., x[k]h[n—Fk].

=—ee 38
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e Thereis nonzero overlap forn =0, 1, 2, 3; i.e., once for each sample
in x[n], and for n =4, 5; i.e., once for each sample in /4[n] but the last.

e After that there is no overlap.

e So the length of the convolutionis N, + N, — 1 = 6.
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e More precisely, computing y[n] means computing the dot product of x[k] and
h|n-k] for each n.

e Consider values of n starting at the far left (—) and going right:

for n < 0, the rightmost sample of #[n-k] does not yet reach the leftmost
sample of x[k]. So the dot product is zero.

starting at n = 0, the rightmost sample of i[n-k] starts to overlap with the
graph of x[k], so we get nonzero in general.

this situation continues for N, values of n, as the rightmost sample of 4[n-
k] progresses to overlap each sample in x[k]. Thus, in general we get a
nonzero dot product for 0 < n < N,-1; that is, for exactly N, values of n.

then, at n = N, the rightmost sample of 4[n-k] hangs over the right edge
of the graph of x[k]. But we still get a nonzero dot product in general.

at n = N,+1, the rightmost two samples of A4[n-k] hang over the right
edge of the graph of x[k], but the dot product is still nonzero in general.

this situation continues until all but one sample of /[n-k] hang over.
After that, the graph of 4[n-k] is entirely past the graph of x[k] and the
dot product is again zero.

e So, counting this up, we see that in general the dot product can be nonzero
one time for each sample in x[k] and one time for each sample in A[n-k]
except the last one... because once the last one hangs over there is no
overlap.

e So, the convolution of two finite-length sequences with lengths N, and N, has
a length that is given by N, + N, — 1.
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>>
>>
>>
>>
ans

>> stem([0:5],vyn); % i

Xn
hn

yn

length (yn)

Matlab:

= [1 2 3 4];
= [0.25 0.5 0.25];
= conv (xn, hn) ;

6

To re-compute this same example using the 1D DFT and circular

convolution, we need to zero pad both sequences to a length of at
least Ny, + N, — 1 =6:

>> Xprime = [xn zeros(l,2)]
>> hprime = [hn zeros(1l,3)]
>> yprime = 1ifft (fft (xprime
>> maxX (abs (yn-yprime))

ans = 2.2204e-16

o

>> % output signal is the same as before

/

) .*fft (hprime)) ;
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Notes on this 1D Example

e You can zero pad to a length > N, + N, — 1. Especially in 2D,
the DFT may run faster if the padded length is a power of 2.

— if you do this, the linear convolution still has length N, +
N, — 1. Itis contained in the first (leftmost) N, + N, — 1
samples of the result sequence.

e Interpreting y[n] as the weighted 3-point average of x[n]:

— There are edge effects on both ends of y[n]: zeros are
averaged in where the graph of 4[n-k] hangs over the
graph of x[k] (m =10, 1, 4, 5).

— Because the filter is causal, it is not a centered average.
For example, y[4] = 0.25x[2] + 0.5x[3] + 0.25x[4].

— In other words, there is delay (the filter introduces
nonzero phase). 42



Notes 1D Example...

e Often, the edge effects are not a concern in 1D applications.
— the impulse response /[n] is often short compared to the
signal x[n].
— for example, applying a 13-point average to one minute of

digital audio at 44 kHz: x[n] has length 2.64 x 10°. But the
edge effects impact only the first 7 samples and the last 7.

e Areasonable time delay is also okay in many 1D applications:
— audio CD player, MP3 player

e A reasonable time delay may be of no concern in some
image/video applications:

— DVD/BIlu ray player, cable set top box, youtube...
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1D Linear Convolution Again

e Back on page 5.38, we had the 1D LTI causal 3-point weighted
average filter with

h{n]=5d[n]+50ln—11+40[n-2].

e By shifting 4[n] in time, we can turn this into a non-causal 3-
point weighted average that is centered, so that it has zero
phase and introduces no phase shift:

g[n]=h[n+1] =%5[n +1]+%5[n]+%5[n—1].

e Because g[n]is real and even, it’s DTFT is also real and even.
— This means that the phase LG(ejw) is identically zero.

— So the filter G is not causal, but it introduces no phase
shift between the input signal and the output signal.

55



e Recall: x[n]=10[n]+20[n—1]+30[n—2]+40[n-23].

Graph of g[k] T T
-1 0 1 k
Graph of g[n—k] T T
n—1 n n+1 k
n=-1 x[k]
I gln-k]
3 1 Lk

-2 -1 0 1 2

e Now, the first nonzero overlap occurs when n =—1 instead of n = 0.

The linear convolution y[n] = x[n] * g[n] still has length N, + N, — 1 = 6.

But now this corresponds to times n = —1 to 4 instead of n=0 to 3.

In Matlab, everything is still exactly the same as before.
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So even though everything is exactly the same in Matlab, we
have to remember that this time the first array element of
yn=conv (xn, hn) is for n =—1, not n=0!

The length 4 weighted 3-point average signal corresponding
to x[n] is obtained by taking yn for n=0 to 3 only.
In Matlab, thisisyn (2:5).
Why?
— The convolution y[n] has length 6 and goes from n =—1 to
n=4.
— So, in Matlab, the first element of yn is for n = —1, the
second element is for n=0, and so on...

Notice that yn (2 :5) is the same size as x[n] and is not
shifted relative to x[n].
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More generally, suppose we have a 1D LTl filter H with an impulse
response A[n] that is nonzero fromn=—-a to n=+4:

h[k] h[n-k]

k k
- B n—3 n+a

If x[n] starts at n=0, then the first nonzero overlap in the linear
convolution y[n] = x[n] * h[n] will occur at n = —¢r.

So the o+1’st nonzero sample of the convolution will be the one that
corresponds to n=0.

Thus, in the Matlab array yn=conv (xn, hn), itis the element
yn (o+1) that corresponds to n=0.

To obtain an output sequence the same length as the input that is not
shifted, we keep length(x[n]) samples from yn starting at index o+1 .

In the example on pages 5.56-5.57, =1 and length(x[n]) = 4, so we kept
yn(2:5).
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