
REVIEW OF 1D LTI SYSTEMSREVIEW OF 1D LTI SYSTEMS 

LTI[ ]x n [ ]y nLTI
H

• Operator notation: { }[ ] [ ]y n H x n=

• In English this is read: “ is the output of[ ]y n• In English, this is read:        is the output of 
the system H when        is the input.” 

[ ]y n
[ ]x n
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THE MOST IMPORTANT PROPERTIESTHE MOST IMPORTANT PROPERTIES 
• Impulse response: when the input is d[n], the output is h[n].

{ }h δ

• Homogeneity: if y[n] = H{x[n]} and c is a constant, then

{ }[ ] [ ]h n H nδ=

{ } { }[ ] [ ] [ ]H H
– In other words, the action of the system commutes with 

multiplication by constants.

{ } { }[ ] [ ] [ ].H cx n cH x n cy n= =

p y

• Superposition: if y1[n] = H{x1[n]} and y2[n] = H{x2[n]}, then

{ } { } { }[ ] [ ] [ ] [ ] [ ] [ ]H x n x n H x n H x n y n y n+ = + = +

– In other words, the action of the system commutes with 
sums

{ } { } { }1 2 1 2 1 2[ ] [ ] [ ] [ ] [ ] [ ].H x n x n H x n H x n y n y n+ = + = +
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sums.



IMPORTANT LTI PROPERTIES 
• Together, homogeneity and superposition are called 

linearity.linearity.

• Together, they imply that the action of a linear system 
commutes with linear combinations:

T l i I i if [ ] H{ [ ]} d i i

{ }1 1 2 2 1 1 2 2[ ] [ ] [ ] [ ].H c x n c x n c y n c y n+ = +

• Translation Invariance: if y[n] = H{x[n]} and n0 is an integer 
constant, then

{ }0 0[ ] [ ].H x n n y n n− = −

– In other words, the action of the system commutes with 
(time) shifts.
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– Also called time invariance or shift invariance.



1D Linear Convolution 
• As we have seen, any 1D discrete-time signal x[n] can be 

written as a linear combination of the translates of d[n]:tte as a ea co b at o o t e t a s ates o d[n]

[ ] [ 1] [ 1] [0] [ ] [1] [ 1]x n x n x n x nδ δ δ= + − + + + − + 

• Here, it is important to realize that x[-1], x[0], x[1], etc., are 
constants; they are numbers.

S if [ ] i h i LTI H h i• So, if x[n] is the input to an LTI system H, the output is

{ }
{ }

[ ] [ ]y n H x n=

{ }
{ } { } { }

[ 1] [ 1] [0] [ ] [1] [ 1]

[ 1] [ 1] [0] [ ] [1] [ 1]
[ 1] [ 1] [0] [ ] [1] [ 1]

H x n x n x n

x H n x H n x H n
h h h

δ δ δ
δ δ δ

= + − + + + − +

= + − + + + − +
+ + + + +
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[ 1] [ 1] [0] [ ] [1] [ 1]x h n x h n x h n= + − + + + − + 



S Notation
• To save time and paper, we can write this exact same thing 

using “capital Sigma do-loops”:

[ ] [ ] [ ]
k

x n x k n kδ
∞

=−∞

= −

{ }{ }[ ] [ ]

[ ] [ ]

y n H x n

H x k n kδ
∞

=

 = − 
 


{ }[ ] [ ]

k

k
x k H n kδ

=−∞

∞

=−∞

 

= −

[ ] [ ]
k

x k h n k
∞

=−∞

= −
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• This is called linear convolution; written y[n] = x[n] ∗ h[n].



Interpretationp
• For each n, the output signal y[n] is a number.

• This number is given by the dot product of the input x[n]g y p p [ ]
with a flipped-and-shifted version of the impulse response:

[ ] [ ] [ ] [ ], [ ( )]y n x k h n k x k h k n
∞

= − = − − −

• Another way to think of it:
Let the input be x[n] = 2d[n] + 3d[n 1] + 4d[n 2]

[ ] [ ] [ ] [ ], [ ( )]
k

y
=−∞


– Let the input be x[n] = 2d[n] + 3d[n-1] + 4d[n-2].
– We can think of this as a sum of three input signals.
– For 2d[n], the output is 2h[n].For 2d[n], the output is 2h[n].
– For 3d[n-1], the output is 3h[n-1].
– For 4d[n-2], the output is 4h[n-2].
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– The total output is the sum of these: that’s convolution.



More About 1D Linear Convolution

• Continuous-time version:

( ) ( ) ( ) ( ) ( ) .y t x t h t x h t dθ θ θ
∞

−∞
= ∗ = −

• Computing 1D linear convolution in the transform domain:

( ) ( ) ( )j j jY e X e H eω ω ω=
discrete time

( ) ( ) ( )
( ) ( ) ( )Y z X z H z=

discrete time

( ) ( ) ( )
( ) ( ) ( )

Y X H
Y s X s H s

Ω = Ω Ω
=

continuous time
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An Important Ideap
• Suppose x[n] = (¾)n, 0 £ n £ 7, and zero otherwise.

• Let h[n] = ½, 0 £ n £ 7, and zero otherwise.[ ]
• Then, according to the convolution formula,

[4] [ ] [4 ]y x k h k
∞

= −
• Notice that the product 

x[k]h[4-k] is zero for k < 0
because x[k] is zero there

[ ] [ ] [ ]
k

y
=−∞


because x[k] is zero there.
• Similarly, the product is zero 

for k > 4 because h[4-k] is zero 
there h[4-k]

x[k]

there.
• In the linear convolution sum, 

we get zero for the product in 
places k where one of the 
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p
signals “hangs over.”



• Now suppose we try to compute this same convolution by 
multiplying the 8-point DFT’s X[k] and H[k].

• Recall that, to the DFT, a finite-length signal is one period of 
a periodic signala periodic signal.

• So the picture will be different this time!

• Because the signals are now• Because the signals are now 
periodically extended, there will no 
longer be zeros in the sum at places 
where one of the signals “hangs over.”

h[4-k], periodically extended

x[k], periodically extended

• The number we get for y[4] this way 
will not be the same as what we got by 
linear convolution on the last page.

• It is something different − it is called 
wraparound convolution.

• More on this in a minute• More on this in a minute…
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Finite-Length 1D Linear Convolutiong
• Let H be a 1D LTI causal 3-point weighted average filter with

1 1 1[ ] [ ] [ 1] [ 2].δ δ δ= + − + −h n n n n
• Let the input be the 4-point signal

4 2 4[ ] [ ] [ 1] [ 2].δ δ δ+ +h n n n n

[ ] 1 [ ] 2 [ 1] 3 [ 2] 4 [ 3].δ δ δ δ= + − + − + −x n n n n n

l h( ) l h(h )• Let N1 = length(x[n]) = 4 and N2 = length(h[n]) = 3.
• The system output is the 1D linear convolution

[ ] [ ] [ ] [ ] [ ]
∞
h k h k
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[ ] [ ] [ ] [ ] [ ].
=−∞

= ∗ = −
k

y n x n h n x k h n k



n < 0 n = 3 x[n]

h[n k]
k k

n = 0 n = 4

h[n-k]

k k

n  0 n  4

k k

n = 1 n = 5

n = 2 n ≥ 6

• There is nonzero overlap for n = 0, 1, 2, 3; i.e., once for each sample 
in x[n], and for n = 4, 5; i.e., once for each sample in h[n] but the last.

k k
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• After that there is no overlap.
• So the length of the convolution is N1 + N2 – 1 = 6.



• More precisely, computing y[n] means computing the dot product of x[k] and 
h[n-k] for each n.

• Consider values of n starting at the far left (−∞) and going right:
– for n < 0, the rightmost sample of h[n-k] does not yet reach the leftmost 

sample of x[k]. So the dot product is zero.
– starting at n = 0, the rightmost sample of h[n-k] starts to overlap with the 

graph of x[k], so we get nonzero in general.
– this situation continues for N1 values of n, as the rightmost sample of h[n-

k] progresses to overlap each sample in x[k]. Thus, in general we get a 
nonzero dot product for 0 £ n ≤ N1-1; that is, for exactly N1 values of n.

– then, at n = N1, the rightmost sample of h[n-k] hangs over the right edge 
of the graph of x[k]. But we still get a nonzero dot product in general.

– at n = N1+1, the rightmost two samples of h[n-k] hang over the right 
edge of the graph of x[k], but the dot product is still nonzero in general.

– this situation continues until all but one sample of h[n-k] hang over.  
After that, the graph of h[n-k] is entirely past the graph of  x[k] and the 
dot product is again zero.

• So, counting this up, we see that in general the dot product can be nonzero 
i f h l i [k] d i f h l i h[ k]one time for each sample in x[k] and one time for each sample in h[n-k] 

except the last one… because once the last one hangs over there is no 
overlap.

S h l i f fi i l h i h l h N d N h
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• So, the convolution of two finite-length sequences with lengths N1 and N2 has 
a length that is given by N1 + N2 – 1.



• Matlab:

[1 2 3 4]>> xn = [1 2 3 4];
>> hn = [0.25 0.5 0.25];
>> yn = conv(xn,hn);
>> length(yn)

6

hi l i h d i l

ans = 6
>> stem([0:5],yn);

• To re-compute this same example using the 1D DFT and circular 
convolution, we need to zero pad both sequences to a length of at 
least N1 + N2 – 1 = 6:

>> xprime = [xn zeros(1 2)];>> xprime = [xn zeros(1,2)];
>> hprime = [hn zeros(1,3)];
>> yprime = ifft(fft(xprime).*fft(hprime));
>> max(abs(yn-yprime))
ans = 2 2204e-16ans = 2.2204e 16
>> % output signal is the same as before
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Notes on this 1D ExampleNotes on this 1D Example
• You can zero pad to a length > N1 + N2 – 1. Especially in 2D, 

the DFT may run faster if the padded length is a power of 2the DFT may run faster if the padded length is a power of 2.

– if you do this, the linear convolution still has length N1 + 
N2 – 1.  It is contained in the first (leftmost) N1 + N2 – 1 2 ( ) 1 2
samples of the result sequence.

• Interpreting y[n] as the weighted 3-point average of x[n]:
– There are edge effects on both ends of y[n]: zeros are 

averaged in where the graph of h[n-k] hangs over the 
graph of x[k] (n = 0, 1, 4, 5).g p [ ] ( , , , )

– Because the filter is causal, it is not a centered average.  
For example, y[4] = 0.25x[2] + 0.5x[3] + 0.25x[4].
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– In other words, there is delay (the filter introduces 
nonzero phase).



Notes 1D Example…Notes 1D Example…
• Often, the edge effects are not a concern in 1D applications.

– the impulse response h[n] is often short compared to the 
signal x[n].

– for example applying a 13-point average to one minute offor example, applying a 13 point average to one minute of 
digital audio at 44 kHz: x[n] has length 2.64 × 106.  But the 
edge effects impact only the first 7 samples and the last 7.

• A reasonable time delay is also okay in many 1D applications:

– audio CD player, MP3 player

• A reasonable time delay may be of no concern in some• A reasonable time delay may be of no concern in some 
image/video applications:

– DVD/Blu ray player, cable set top box, youtube…
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1D Linear Convolution Againg
• Back on page 5.38, we had the 1D LTI causal 3-point weighted 

average filter withg

• By shifting h[n] in time, we can turn this into a non-causal 3-

1 1 1
4 2 4[ ] [ ] [ 1] [ 2].δ δ δ= + − + −h n n n n

point weighted average that is centered, so that it has zero 
phase and introduces no phase shift:

• Because g[n] is real and even, it’s DTFT is also real and even.

1 1 1
4 2 4[ ] [ 1] [ 1] [ ] [ 1].δ δ δ= + = + + + −g n h n n n n

g[ ] ,

– This means that the phase ∠ is identically zero.

– So the filter G is not causal, but it introduces no phase 

( )ωjG e
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shift between the input signal and the output signal.



• Recall: [ ] 1 [ ] 2 [ 1] 3 [ 2] 4 [ 3].δ δ δ δ= + − + − + −x n n n n n

Graph of g[k]
0−1 k1

n−1 n+1n k
Graph of g[n−k]

n = −1 x[k]
g[n-k]

• Now the first nonzero overlap occurs when n = −1 instead of n = 0

k
−1−2 0 1 2 3

Now, the first nonzero overlap occurs when n  1 instead of n  0.
• The linear convolution y[n] = x[n] ∗ g[n] still has length N1 + N2 – 1 = 6.

• But now this corresponds to times n = −1 to 4 instead of n=0 to 5.
I M tl b thi i till tl th b f• In Matlab, everything is still exactly the same as before.
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• So even though everything is exactly the same in Matlab, we 
h b h h h f l fhave to remember that this time the first array element of 
yn=conv(xn,hn)is for n = −1, not n=0!

• The length 4 weighted 3-point average signal correspondingThe length 4 weighted 3 point average signal corresponding 
to x[n] is obtained by taking yn for n=0 to 3 only.

• In Matlab, this is yn(2:5).

• Why?

– The convolution y[n] has length 6 and goes from n = −1 to 
n=4n=4.

– So, in Matlab, the first element of yn is for n = −1, the 
second element is for n=0, and so on…

• Notice that yn(2:5)is the same size as x[n] and is not 
shifted relative to x[n].
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• More generally, suppose we have a 1D LTI filter H with an impulse 
response h[n] that is nonzero from n = −α to  n = +β :β

h[n-k]h[k]

k k
−α β n+αn−β

• If x[n] starts at n=0, then the first nonzero overlap in the linear 
convolution y[n] = x[n] ∗ h[n] will occur at n = −α .

• So the α+1’st nonzero sample of the convolution will be the one that 
corresponds to n=0.

• Thus, in the Matlab array yn=conv(xn,hn), it is the element 
yn(α+1) that corresponds to n=0.

• To obtain an output sequence the same length as the input that is not
shifted, we keep length(x[n]) samples from yn starting at index α+1.

• In the example on pages 5.56-5.57, α = 1 and length(x[n]) = 4, so we kept 
yn(2:5).
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