ECE 4213/5213 Test 1

	Monday, October 19 Wednesday, October 21, 2020
Fall 2020	Name: SOLUTION
Dr. Havlicek	Student Num:
the course formul the test. All work use your own bla Canvas page no l	s test is open book and open notes. You may also use your calculator and la sheet Other materials are not allowed. You have 48 hours to complete a must be your own. You may work the test on this test paper or you may ank paper. Upload a scan or photograph of your test paper to the course ater than midnight on Wednesday, October 21, 2020.
	led for undergraduate credit: work any four problems. Each problem Below, circle the numbers of the four problems you wish to have graded.
points.	led for graduate credit: work all five problems. Each problem counts 20
S	HOW ALL OF YOUR WORK for maximum partial credit!
	GOOD LUCK!
SCORE: 1. (25/20)	
	
3. (25/20)	
4. $(25/20)$	
5. (25/20)	
TOTAL (10	0).
ny honor, 1 affirm Signed.	that I have neither given nor received inappropriate aid in the completion of this Date:

1. 25/20 pts. The input x[n] and output y[n] of a discrete-time system H are related by

$$y[n] = x[n] + nx[n-1] + 1.$$

(a) 8/6 pts. Is the system H linear? Justify your answer.

Let xity = xztry = others and let a=b=1.

Then yith) = $H\{x_1(x_0)\}$ = $\delta(x_1+1) + n \delta(x_1) + 1 = \delta(x_1+1) + 1 = y_2(x_1)$.

Then ayitns+byztns = yitns+yztns = 2yitns = 20th+1)+2.

Now let 73[n] = ax, [n] + bx2[n] = x, [n] + x2[n] = 20[n+1].

Then y3 (n) = H{\int X3 (n)} = X3 (n) + n x3 (n-1) + 1

= 28 [n+1] + 2n8[n] + 1 = 28[n+1] + 1/1, # ay, ta)+by, (a).

Since youn + ayita) + byztan, the system H is

NOT LINEAR

(b) 8/6 pts. Is the system H time invariant? Justify your answer.

Let x, [n] = o[n+1].

Then y, tn7 = otnti)+1, as in part (a).

Then yiTn-1] = f[n]+1.

Now let x2Tn) = x1Tn-1] = STn].

Then $y_2 t_n = H_2 x_2 t_n = x_2 t_n + n x_2 t_n - 1 + 1 = \delta t_n + n \delta t_n - 1 + 1$ $= \delta t_n + \delta t_n - 1 + 1 \neq y_1 t_n - 1 = \delta t_n + n \delta t_n + n \delta t_n - 1 = \delta t_n + n \delta$

=> since years & y, th-1), the system H is

NOT TIME INVARIANT

Problem 1, cont...

(c) 9/8 pts. Is the system H BIBO stable? Justify your answer.

Let XINJ = UIN). Then XINJ is a bounded input signal, since |XINJ| \leq 1 \tau N \in \mathbb{Z}.

Now suppose that your = HEXCATI is also bounded.

Then BEER, B>O, such that lyens | SB YNEZ.

When n=0, we have

|yto] = |uco] + out-1] + 1 | = 11+1 = 2.

-> Therefore, we know that B 32.

Let no = [B]. Then no EZ, no 7,2, and no 7, B.

But, when n=no we have

| ytho] = | utho] + no utho-1] + 1 | = 1 b/c no 7/2

 $= |1 + n_0 + 1| = |2 + n_0|$

= 2+ ho (because no 7,270)

>2+B (because no 7, B)

> B/// .

This contradicts the hypothesis that you is bounded by B. Therefore, no such B can exist and your is unbounded. Since a bounded input signal produced an unbounded output signal, the system H is NOT STABLE.

2. 25/20 pts. The input x[n] and output y[n] of a discrete-time LTI system H are related by

$$y[n] = -x[n] + 2x[n-2] - x[n-4].$$

(a) 6/5 pts. Find the system frequency response $H(e^{j\omega})$

$$H(e^{jw}) = \frac{Y(e^{jw})}{X(e^{jw})} = -1 + 2e^{-j2w} - e^{-j4w}$$

(b) 7/5 pts. Find the system magnitude response $A(\omega)$ and phase response $\theta(\omega)$ such that $H(e^{j\omega}) = A(\omega)e^{j\theta(\omega)}$

Use the linear phase "half power" trick (notes p. 3.126):

$$H(e^{j\omega}) = -1 + 2e^{-j2\omega} - e^{-j4\omega}$$

= $[-e^{j2\omega} + 2 - e^{-j2\omega}]e^{-j2\omega}$

$$A(\omega) = 2 - 2\cos(2\omega)$$

$$\theta(\omega) = -2\omega$$

Problem 2, cont...

(c) 6/5 pts. Does the system H have linear phase? (Justify your answer).

YES, because $\Theta(w) = -2\omega$ is a linear function of ω .

(d) 6/5 pts. Find the system group delay $\tau(\omega)$.

$$T(w) = -\frac{d}{dw} \theta(w)$$

$$= -\frac{d}{dw} \{-2w\}$$

$$= 2$$

3. 25/20 pts. The input x[n] and output y[n] of a causal discrete-time LTI system Hare related by

 $y[n] + \frac{3}{2}y[n-1] - y[n-2] = 2x[n] + \frac{3}{2}x[n-1].$

(a) 7/5 pts. Find the transfer function H(z), specify the ROC, and give a pole-zero

$$Z: Y_{(2)} + \frac{3}{2}z^{-1}Y_{(2)} - z^{-2}Y_{(2)} = 2X_{(2)} + \frac{3}{2}z^{-1}X_{(2)}$$

$$Y_{(2)} \left[1 + \frac{3}{2}z^{-1} - z^{-2}\right] = X_{(2)} \left[2 + \frac{3}{2}z^{-1}\right]$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{2 + \frac{3}{2}z^{-1}}{1 + \frac{3}{2}z^{-1} - z^{-2}} = \frac{2(1 + \frac{3}{4}z^{-1})}{(1 - \frac{1}{2}z^{-1})(1 + 2z^{-1})}$$

NOTE:
$$H(z) \cdot \frac{z^2}{z^2} = \frac{2z(z+\frac{3}{4})}{(z-\frac{1}{2})(z+2)}$$
 Zeros: $z=0,-\frac{3}{4}$

poles: == = = -2

Since we are given that the system H is causal, the ROC of HCZ) must be the exterior of a circle that passes through the largest magnitude pole (z=-z).

ROC: 12/72

Problem 3, cont...

(b) 6/5 pts. Is the system H BIBO stable? Justify your answer.

NO, because the ROC of H(Z) does not contain the unit circle of the Z-plane.

(c) 6/5 pts. Find the impulse response h[n].

H(z) =
$$\frac{2(1+\frac{3}{4}z^{-1})}{(1-\frac{1}{2}z^{-1})(1+2z^{-1})} = \frac{A}{1-\frac{1}{2}z^{-1}} + \frac{B}{1+2z^{-1}}$$

A = $\frac{2(1+\frac{3}{4}\theta)}{1+2\theta}\Big|_{\theta=2} = \frac{2(1+\frac{3}{2})}{1+4} = \frac{2(\frac{5}{2})}{5} = \frac{5}{5} = 1$

B = $\frac{2(1+\frac{3}{4}\theta)}{1-\frac{1}{2}\theta}\Big|_{\theta=-\frac{1}{2}} = \frac{2(1+\frac{3}{4}(-\frac{1}{2}))}{1-\frac{1}{2}(-\frac{1}{2})} = \frac{2(1-\frac{3}{8})}{1+\frac{1}{4}}$

$$= \frac{2(\frac{5}{8})}{\frac{5}{4}} = \frac{\frac{5}{4}}{\frac{5}{4}} = 1$$

H(z) = $\frac{1}{1-\frac{1}{2}z^{-1}} + \frac{1}{1+2z^{-1}}$

$$= \frac{1}{1+2z^{-1}}$$

$$= \frac{1}{1+2z^{-1}}$$

Problem 3, cont...

(d) 6/5 pts. The system input is given by $x[n] = \frac{1}{2}\delta[n] + \delta[n-1]$. Use the z-transform to find the system output y[n].

Table:
$$X(z) = \frac{1}{2} + z^{-1}$$
, $|z| > 0$.
 $Y(z) = X(z)H(z) = \left[\frac{1}{2} + z^{-1}\right] \cdot \frac{2(1+\frac{3}{4}z^{-1})}{(1-\frac{1}{2}z^{-1})(1+2z^{-1})}$

$$= \frac{2(\frac{1}{2}+z^{-1})(1+\frac{3}{4}z^{-1})}{(1-\frac{1}{2}z^{-1})(1+2z^{-1})} = \frac{(1+2z^{-1})(1+2z^{-1})}{(1-\frac{1}{2}z^{-1})(1+2z^{-1})}$$

$$= \frac{1+\frac{3}{4}z^{-1}}{1-\frac{1}{2}z^{-1}} = \frac{1}{1-\frac{1}{2}z^{-1}} + \frac{\frac{3}{4}z^{-1}}{1-\frac{1}{2}z^{-1}}$$

$$= \frac{1}{1-\frac{1}{2}z^{-1}} + \left[\frac{3/4}{1-\frac{1}{2}z^{-1}}\right] z^{-1}$$

$$= \frac{1}{1-\frac{1}{2}z^{-1}}, |z| > \frac{1}{2} \iff (\frac{1}{2})^n ut^{n-1}$$
Time-Shift
plus linearity: $\left(\frac{3/4}{1-\frac{1}{2}z^{-1}}\right] z^{-1}, |z| > \frac{1}{2} \iff \frac{3}{4}(\frac{1}{2})^{n-1} ut^{n-1}$

All Together:
$$y \in (\pm)^n u \in (\pm)^n$$

4. 25/20 pts. The input x[n] and output y[n] of a causal discrete-time LTI system H are related by

$$y[n] - \frac{1}{2}y[n-1] = x[n] - \frac{1}{2}x[n-1].$$

The input signal is given by

$$x[n] = 3\left(\frac{1}{2}\right)^n u[n] - 2\left(\frac{1}{3}\right)^n u[n]$$

and it is known that y[-1] = 2.

Use the unilateral z-transform to find y[n] for $n \geq 0$.

Hint: when you apply the unilateral z-transform time-shift property to the term y[n-1] on the left side of the difference equation, you will get a y[-1] in the z-domain equation; that's fine, since y[-1] is given. Similarly, the term x[n-1] on the right side of the difference equation will give you an x[-1] in the z-domain. But x[-1] is not given. However, if you plug in n=-1 to the given expression for x[n] it will show you that x[-1]=0.

More Workspace for Problem 4..

$$y_{u}(z) = \frac{1-\frac{1}{2}z^{-1}}{1-\frac{1}{2}z^{-1}} + \frac{1}{1-\frac{1}{2}z^{-1}}$$

$$= \frac{1+1-\frac{1}{3}z^{-1}}{1-\frac{1}{3}z^{-1}} = \frac{2-\frac{1}{3}z^{-1}}{1-\frac{1}{3}z^{-1}}$$

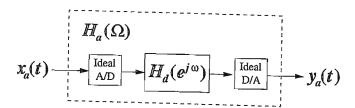
$$y_n(z) = \frac{2-\frac{1}{3}z^{-1}}{(1-\frac{1}{2}z^{-1})(1-\frac{1}{3}z^{-1})} = \frac{A}{1-\frac{1}{2}z^{-1}} + \frac{B}{1-\frac{1}{3}z^{-1}}$$

$$A = \frac{2 - \frac{1}{3}\theta}{1 - \frac{1}{3}\theta}\Big|_{\theta=2} = \frac{2 - \frac{2}{3}}{1 - \frac{2}{3}} = \frac{4/3}{1/3} = 4$$

$$B = \frac{2 - \frac{1}{3}\theta}{1 - \frac{1}{2}\theta} \Big|_{\theta=3} = \frac{2 - 1}{1 - \frac{3}{2}} = \frac{1}{-\frac{1}{2}} = -2$$

$$y_u(z) = \frac{4}{1-\frac{1}{2}z^{-1}} - \frac{2}{1-\frac{1}{3}z^{-1}}$$

5. 25/20 pts. The continuous-time LTI system $H_a(\Omega)$ shown in the figure below is implemented using an ideal A/D converter, a discrete-time LTI system $H_d(e^{j\omega})$, and an ideal D/A converter.



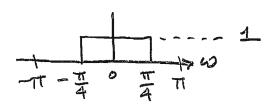
The sampling frequency of the A/D and D/A converters is $F_T=2$ kHz, so $\Omega_T=4,000\pi$ rad/sec. All input signals $x_a(t)$ are bandlimited to $|\Omega|<\Omega_T/2$ (this prevents any aliasing and ensures that H_a will be an LTI system).

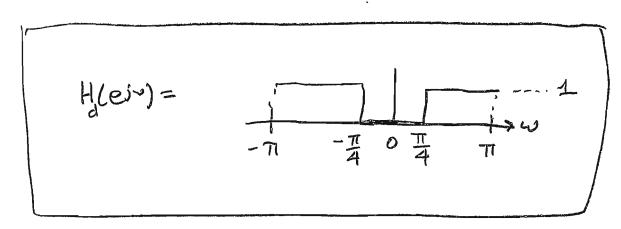
The impulse response of the discrete-time filter H_d is given by

$$h_d[n] = \delta[n] - \frac{\sin\frac{\pi}{4}n}{\pi n}.$$

(a) 8/7 pts. Find the discrete-time frequency response $H_d(e^{j\omega})$.

Table:





Problem 5, cont ...

T=
$$\frac{2\pi}{\Omega_7} = \frac{2\pi}{4,000\pi} = \frac{1}{2000}$$

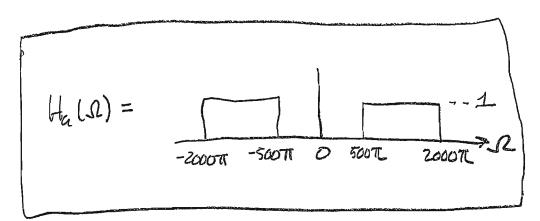
Ha(\Omega) = $\frac{1}{2000}$

Ha(\Omega) = $\frac{1}{2000}$

when
$$w=\overline{4}$$
, $\Omega = 500\pi$
when $w=\pi$, $\Omega = 2000\pi$

$$H_{\alpha}(\Omega) = \begin{cases} H_{\alpha}(e^{i\Omega T}), |\Omega| < \frac{\Omega_{T}}{2} = 2000T$$

 $O, |\Omega| > \frac{\Omega_{T}}{2} = 2000T$



(c) 8/6 pts. Find the continuous-time impulse response $h_a(t)$.

Solution I: Assume that the antialiasing filter zers out all analog frequencies 12 > 20007;

Table;

$$h_a(t) = \delta(t) - \frac{\sin 500\pi t}{\pi t}$$

Solution IL: Assume there is no antialiasing filter HoLD) must explicitly Zero cut analy frequencies S2 > 2000 T.

$$H_{\alpha}(\Omega) = \frac{1}{-2000\pi} \frac{1}{0.200\pi} - \frac{1}{0.000}$$

$$-500\pi - 500\pi$$

Table:

$$h_a(t) = \frac{\sin 2000\pi}{\pi t} - \frac{\sin 500\pi t}{\pi t}$$

=> Either solution is acceptable.