
2. Text problem 6.25.
 To find the poles of $G(z)$, use the quadratic formula and/or the Matlab `roots` function to factor the denominator quadratics.

3. Text problem 6.34.
 $H(z)$ is given in terms of z instead of z^{-1}. Multiply by z^{-2}/z^{-2} to get it in terms of z^{-1}. This will leave you with an improper fraction in z^{-1}. But most partial fraction techniques only work for proper fractions. If you naively try to perform a partial fraction expansion directly on the improper fraction, you will get the wrong answer.
 Instead, you can perform long division to clear the improper fraction and then apply partial fractions to the remainder (which will be a proper fraction in z^{-1}).
 Alternatively, you can factor a z^{-1} out of the numerator to get a proper fraction. You can then perform a partial fraction expansion on this proper fraction and invert it. Then apply the time shift property to account for the z^{-1} you factored out at the beginning.
 In either case, use the Matlab `residuez` function to perform the verification.

4. Text problem 6.43.
 You can use the Matlab `residuez` function to find the partial fraction expansion.

5. Text problem 6.46.
 As in problem 6.34, your $H(z)$ here will be an improper fraction in z^{-1}. You can use `residuez` to check your answer.

DUE: 10/3/2016 (in class)