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Name: SOLUTION (Havlicek) 

Section: 

Laboratory Exercise 3 

DISCRETE-TIME SIGNALS:  FREQUENCY-DOMAIN 
REPRESENTATIONS 

3.1 DISCRETE-TIME FOURIER TRANSFORM 

Project 3.1  DTFT Computation 

 A copy of Program P3_1 is given below: 
% Program P3_1 
% Evaluation of the DTFT  
clf; 
% Compute the frequency samples of the DTFT 
w = -4*pi:8*pi/511:4*pi; 
num = [2 1];den = [1 -0.6]; 
h = freqz(num, den, w); 
% Plot the DTFT 
subplot(2,1,1) 
plot(w/pi,real(h));grid 
title('Real part of H(e^{j\omega})') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
subplot(2,1,2) 
plot(w/pi,imag(h));grid 
title('Imaginary part of H(e^{j\omega})') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
pause 
subplot(2,1,1) 
plot(w/pi,abs(h));grid 
title('Magnitude Spectrum |H(e^{j\omega})|') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
subplot(2,1,2) 
plot(w/pi,angle(h));grid 
title('Phase Spectrum arg[H(e^{j\omega})]') 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
 
Answers: 

Q3.1  The expression of the DTFT being evaluated in Program P3_1 is -   
1

1

2

1 0.6
j z

H e
z










 

 The function of the pause command is -  to pause execution of a Matlab program.  Without 
arguments, pause waits for the user to type any key.  With an argument, pause pauses 
for a number of seconds specified by the argument. 
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Q3.2   The plots generated by running Program P3_1 are shown below: 
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 The DTFT is a _periodic_ function of . 

 Its period is -  2 

 The types of symmetries exhibited by the four plots are as follows:  

 The real part is 2 periodic and EVEN SYMMETRIC. 

 The imaginary part is 2 periodic and ODD SYMMETRIC. 

 The magnitude is 2 periodic and EVEN SYMMETRIC. 

 The phase is 2 periodic and ODD SYMMETRIC. 

Q3.3   The required modifications to Program P3_1 to evaluate the given DTFT of Q3.3 are given below: 
 
% Program P3_1B 
% Evaluation of the DTFT  
clf; 
% Compute the frequency samples of the DTFT 
%  because 0 \leq w \leq pi is the default for "freqz", 
%  the vector "w" is now an output of freqz instead of an input. 
N = 512; 
num = [0.7 -0.5 0.3 1]; 
den = [1 0.3 -0.5 0.7]; 
[h,w] = freqz(num, den, N); 
% Plot the DTFT 
subplot(2,1,1) 
plot(w/pi,real(h));grid 
title('Real part of H(e^{j\omega})') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
subplot(2,1,2) 
plot(w/pi,imag(h));grid 
title('Imaginary part of H(e^{j\omega})') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
pause 
subplot(2,1,1) 
plot(w/pi,abs(h));grid 
title('Magnitude Spectrum |H(e^{j\omega})|') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
subplot(2,1,2) 
plot(w/pi,angle(h));grid 
title('Phase Spectrum arg[H(e^{j\omega})]') 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
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The plots generated by running the modified Program P3_1 are shown below: 
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   The DTFT is a _periodic__ function of .   

 Its period is -  2 
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 The jump in the phase spectrum is caused by -   a branch cut in the arctan function used by 
angle in computing the phase.  “angle” returns the principal branch of arctan. 

 The phase spectrum evaluated with the jump removed by the command unwrap is as given 

below: 
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Q3.4   The required modifications to Program P3_1 to evaluate the given DTFT of Q3.4 are given below: 
 
% Program P3_1D 
% Evaluation of the DTFT  
clf; 
% Compute the frequency samples of the DTFT 
w = -4*pi:8*pi/511:4*pi; 
num = [1 3 5 7 9 11 13 15 17]; 
den = 1; 
h = freqz(num, den, w); 
% Plot the DTFT 
subplot(2,1,1) 
plot(w/pi,real(h));grid 
title('Real part of H(e^{j\omega})') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
subplot(2,1,2) 
plot(w/pi,imag(h));grid 
title('Imaginary part of H(e^{j\omega})') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
pause 
subplot(2,1,1) 
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plot(w/pi,abs(h));grid 
title('Magnitude Spectrum |H(e^{j\omega})|') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
subplot(2,1,2) 
plot(w/pi,angle(h));grid 
title('Phase Spectrum arg[H(e^{j\omega})]') 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
  

 

 The plots generated by running the modified Program P3_1 are shown below: 
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   The DTFT is a _periodic_ function of .   

 Its period is -  2 

 The jump in the phase spectrum is caused by -   “angle” returns the principal value of the 
arc tangent. 

Q3.5 The required modifications to Program P3_1 to plot the phase in degrees are indicated below: 

Only the last paragraph of the code needs to be changed to: 
 
% plot phase in degrees 
subplot(2,1,2) 
plot(w/pi,180*angle(h)/pi);grid 
title('Phase Spectrum arg[H(e^{j\omega})]') 
xlabel('\omega /\pi'); 
ylabel('Phase in degrees'); 
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Project 3.2  DTFT Properties 

Answers: 

Q3.6   The modified Program P3_2 created by adding appropriate comment statements, and adding 
program statements for labeling the two axes of each plot being generated by the program is 
given below: 

 
% Program P3_2B 
% Time-Shifting Properties of DTFT 
clf; 
w = -pi:2*pi/255:pi; % freqency vector for evaluating DTFT 
D = 10; % Amount of time shift in samples 
num = [1 2 3 4 5 6 7 8 9]; 
% h1 is the DTFT of original sequence 
% h2 is the DTFT of the time shifted sequence 
h1 = freqz(num, 1, w);  
h2 = freqz([zeros(1,D) num], 1, w); 
subplot(2,2,1) 
% plot the DTFT magnitude of the original sequence 
plot(w/pi,abs(h1));grid 
title('Magnitude Spectrum of Original Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
% plot the DTFT magnitude of the shifted sequence 
subplot(2,2,2) 
plot(w/pi,abs(h2));grid 
title('Magnitude Spectrum of Time-Shifted Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
% plot the DTFT phase of the original sequence 
subplot(2,2,3) 
plot(w/pi,angle(h1));grid 
title('Phase Spectrum of Original Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
% plot the DTFT phase of the shifted sequence 
subplot(2,2,4) 
plot(w/pi,angle(h2));grid 
title('Phase Spectrum of Time-Shifted Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 

  

 

 The parameter controlling the amount of time-shift is - D 
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Q3.7 The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  The time shift does not have any 
effect at all on the magnitude spectrum.  However, it has a significant effect on the 
phase spectrum.  The effect is to add phase, which makes the slope of the phase 
function steeper (more negative in this case). 

Q3.8 Program P3_2 was run for the following value of the time-shift – D=5. 

 The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  As before, of course, the time shift 
has no effect on the magnitude spectrum.  However, there is a very significant change 
to the phase.  As before, the time shift adds phase to the DTFT, making the slope of the 
phase spectrum steeper.  However, in this case with D=5 instead of D=10, the 
(negative) increase in the slope is less than it was before. 

Q3.9 Program P3_2 was run for the following values of the time-shift and for the following values of 
length for the sequence –  

1. Length 4, time shift D=3. 

2. Length 16, time shift D=12. 

 The plots generated by running the modified program are given below: 



11 

-1 -0.5 0 0.5 1
2

4

6

8

10
Magnitude Spectrum of Original Sequence

 /

A
m

pl
itu

de

-1 -0.5 0 0.5 1
2

4

6

8

10
Magnitude Spectrum of Time-Shifted Sequence

 /

A
m

pl
itu

de
-1 -0.5 0 0.5 1

-4

-2

0

2

4
Phase Spectrum of Original Sequence

 /

P
ha

se
 in

 r
ad

ia
ns

-1 -0.5 0 0.5 1
-4

-2

0

2

4
Phase Spectrum of Time-Shifted Sequence

 /
P

ha
se

 in
 r

ad
ia

ns

 

-1 -0.5 0 0.5 1
0

50

100

150
Magnitude Spectrum of Original Sequence

 /

A
m

pl
itu

de

-1 -0.5 0 0.5 1
0

50

100

150
Magnitude Spectrum of Time-Shifted Sequence

 /

A
m

pl
itu

de

-1 -0.5 0 0.5 1
-4

-2

0

2

4
Phase Spectrum of Original Sequence

 /

P
ha

se
 in

 r
ad

ia
ns

-1 -0.5 0 0.5 1
-4

-2

0

2

4
Phase Spectrum of Time-Shifted Sequence

 /

P
ha

se
 in

 r
ad

ia
ns

 

 From these plots we make the following observations:  Increasing the length makes the 
magnitude spectrum more narrow (i.e., makes the signal more “low pass”).  It also 
makes the phase steeper (i.e., the slope more negative).  This is because, if we think of 
the sequence as the impulse response of an LTI system, increasing the length adds more 
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delay between the input and output of the system.  As before, the time shift does not 
have any effect on the magnitude spectrum.  However, it makes the slope of the phase 
spectrum more negative.  The larger the value of the delay, the more negative slope is 
added to the phase spectrum. 

Q3.10  The modified Program P3_3 created by adding appropriate comment statements, and adding 
program statements for labeling the two axes of each plot being generated by the program is 
given below: 

 
% Program P3_3B 
% Frequency-Shifting Properties of DTFT 
clf; 
w = -pi:2*pi/255:pi; % freqency vector for evaluating DTFT 
wo = 0.4*pi; % Amount of frequency shift in radians 
% h1 is the DTFT of the original sequence 
% h2 is the DTFT of the frequency shifted sequence 
num1 = [1 3 5 7 9 11 13 15 17]; 
L = length(num1); 
h1 = freqz(num1, 1, w); 
n = 0:L-1; 
num2 = exp(wo*i*n).*num1; 
h2 = freqz(num2, 1, w); 
% plot the DTFT magnitude of the original sequence 
subplot(2,2,1) 
plot(w/pi,abs(h1));grid 
title('Magnitude Spectrum of Original Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
% plot the DTFT magnitude of the freq shifted sequence 
subplot(2,2,2) 
plot(w/pi,abs(h2));grid 
title('Magnitude Spectrum of Frequency-Shifted Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
% plot the DTFT phase of the original sequence 
subplot(2,2,3) 
plot(w/pi,angle(h1));grid 
title('Phase Spectrum of Original Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
% plot the DTFT phase of the shifted sequence 
subplot(2,2,4) 
plot(w/pi,angle(h2));grid 
title('Phase Spectrum of Frequency-Shifted Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
  

 

 The parameter controlling the amount of frequency-shift is -  wo. 

Q3.11  The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  Both the magnitude and phase 
spectra are shifted right by wo, which is given by 0.4 in this case.  Note that the 
frequency shifted signal was obtained by multiplying the original sequence pointwise 
with a complex-valued exponential sequence.  Thus, the frequency shifted sequence is 
also complex-valued and it’s DTFT does not have conjugate symmetry. 

Q3.12 Program P3_3 was run for the following value of the frequency-shift –  wo = -0.5. 

 The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  In this case, the magnitude and 
phase spectra are shifted left by /2 rad.  As before, the frequency shifted signal is 
complex-valued, so the frequency shift causes a loss of the conjugate symmetry that 
was present in the spectrum of the original signal.  NOTE: you should keep in mind that 
these spectra are all 2-periodic; we are only displaying the fundamental period. 

Q3.13 Program P3_3 was run for the following values of the frequency-shift and for the following 
values of length for the sequence –  

1. Length 4, frequency shift wo = . 

2. Length 16, frequency shift wo = -0.3. 

 The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  The original sequences have a low 
pass characteristic.  As before with the time shift property, a shorter length gives a 
broader low pass magnitude spectrum, whereas a longer length results in a low pass 
magnitude spectrum that is more narrow.  Also, if we consider these sequences to be 
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the impulse responses of LTI systems, then a shorter length implies a smaller delay 
between the input and output of the system, which corresponds to a phase spectrum 
with a negative slope that is less steep.  Likewise, a longer length implies a longer delay 
between the input and output, which corresponds to a phase spectrum with a negative 
slope that is steeper.  In both cases shown here, the effect of the frequency shift is to 
translate both the magnitude and phase spectrum by wo radians.  Whereas the original 
sequences are real-valued and hence have conjugate symmetric spectra, the frequency 
shifted sequences are complex-valued and do not exhibit any inherent spectral 
symmetry. 

Q3.14  The modified Program P3_4 created by adding appropriate comment statements, and adding 
program statements for labeling the two axes of each plot being generated by the program is 
given below:   

 
% Program P3_4B 
% Convolution Property of DTFT 
clf; 
w = -pi:2*pi/255:pi; % freqency vector for evaluating DTFT 
x1 = [1 3 5 7 9 11 13 15 17]; % first sequence 
x2 = [1 -2 3 -2 1]; % second sequence 
y = conv(x1,x2); % time domain convolution of x1 and x2 
h1 = freqz(x1, 1, w); % DTFT of sequence x1 
h2 = freqz(x2, 1, w); % DTFT of sequence x2 
% hp is the pointwise product of the two DTFT's 
hp = h1.*h2; 
% h3 is the DTFT of the time domain convolution; 
%   it should be the same as hp 
h3 = freqz(y,1,w); 
% plot the magnitude of the product of the two original spectra 
subplot(2,2,1) 
plot(w/pi,abs(hp));grid 
title('Product of Magnitude Spectra','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
% plot the magnitude spectrum of the time domain convolution 
subplot(2,2,2) 
plot(w/pi,abs(h3));grid 
title('Magnitude Spectrum of Convolved Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
% plot the phase of the product of the two original spectra 
subplot(2,2,3) 
plot(w/pi,angle(hp));grid 
title('Sum of Phase Spectra','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
% plot the phase spectrum of the time domain convolution 
subplot(2,2,4) 
plot(w/pi,angle(h3));grid 
title('Phase Spectrum of Convolved Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
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Q3.15  The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  The DTFT magnitude and phase 
spectra obtained by performing pointwise multiplication of the two DTFT’s of the 
original sequences are identical to those obtained by performing time domain 
convolution of the two original sequences; this verifies the convolution property of the 
DTFT. 

Q3.16  Program P3_4 was run for the following two different sets of sequences of varying lengths –  

1. Length of x1 = 8; x1[n] =  1 2
n
 for 0 ≤ n ≤ 7;                                               

Length of x2 = 4; x2[n]= [0.25 0.25 0.25 0.25] 

2. Length of  x1 = 16; x1[n] =  3 4
n  for 0 ≤ n ≤ 15;                                       

Length of x2 = 8; x2[n]= [1 3 5 7 9 11 13 15] 

 The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  The convolution property of the 
DTFT is again verified in both cases.  In each case, the DTFT magnitude and phase 
obtained by taking the pointwise products of the DTFT’s of the two original sequences 
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are identical to the magnitude and phase spectra obtained from the DTFT of the time 
domain convolution of the two original sequences. 

Q3.17  The modified Program P3_5 created by adding appropriate comment statements, and adding 
program statements for labeling the two axes of each plot being generated by the program is 
given below:    

 
% Program P3_5B 
% Modulation Property of DTFT 
clf; 
w = -pi:2*pi/255:pi; % freqency vector for evaluating DTFT 
x1 = [1 3 5 7 9 11 13 15 17]; % first sequence 
x2 = [1 -1 1 -1 1 -1 1 -1 1]; % second sequence 
% y is the time domain pointwise product of x1 and x2 
y = x1.*x2; 
h1 = freqz(x1, 1, w); % DTFT of sequence x1 
h2 = freqz(x2, 1, w); % DTFT of sequence x2 
h3 = freqz(y,1,w);    % DTFT of sequence y 
% plot the magnitude spectrum of x1 
subplot(3,1,1) 
plot(w/pi,abs(h1));grid 
title('Magnitude Spectrum of First Sequence') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
% plot the magnitude spectrum of x2 
subplot(3,1,2) 
plot(w/pi,abs(h2));grid 
title('Magnitude Spectrum of Second Sequence') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
% plot the magnitude spectrum of y 
%   it should be 1/2pi times the convolution of the DTFT's 
%   of the two original sequences. 
subplot(3,1,3) 
plot(w/pi,abs(h3));grid 
title('Magnitude Spectrum of Product Sequence') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 

 

 

 

Q3.18  The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  The DTFT of the product sequence 
y is 1/2 times the convolution of the DTFT’s of the two sequences x1 and x2, as 
expected.  The low-pass mainlobe of the DTFT of x1 combines with the high-pass 
mainlobe of the DTFT of x2 to produce a high-pass mainlobe centered at ± in the 
magnitude spectrum of the product signal.  The low-pass mainlobe of the DTFT of x1 
combines with the low-pass sidelobes of the DTFT of x2 to produce a low-pass smooth 
region of relatively lower gain centered at DC in the magnitude spectrum of the product 
signal. 

Q3.19  Program P3_5 was run for the following two different sets of sequences of varying lengths –  

1. Length of x1 = 8; x1[n] =  1 2
n
 for 0 ≤ n ≤ 7;                                               

Length of x2 = 8; x2[n]= [1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8] 

2. Length of  x1 = 16; x1[n] =  3 4
n  for 0 ≤ n ≤ 15;                                       

Length of x2 = 16; x2[n]= [1 3 5 7 9 11 13 15 0 0 0 0 0 0 0 0] 

 

 The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  In the first example, both x1 and x2 
are low pass sequences.  Moreover, the DTFT of x2 is a sync pulse.  Taking the 
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product of these two sequences produces a new sequence y that is also low pass in 
character.  The magnitude spectrum of y has a shape that is very similar to that of x1, 
but with some averaging.  The spectral magnitude of y is reduced compared to that of 
x1, primarily due to the division by 2 that is inherent in the DTFT frequency 
convolution (time modulation) property.  In the second example, x1 is high pass while 
x2 is low pass.  As before in Q3.18, we see that magnitude spectrum of y is essentially 
high pass in character as a result of the low pass mainlobe of the DTFT of x2 being 
convolved with the high pass mainlobe of x1. 

Q3.20  The modified Program P3_6 created by adding appropriate comment statements, and adding 
program statements for labeling the two axes of each plot being generated by the program is 
given below: 

 
% Program P3_6B 
% Time Reversal Property of DTFT 
clf; 
w = -pi:2*pi/255:pi; % freqency vector for evaluating DTFT 
% original ramp sequence 
%  note: num is nonzero for 0 <= n <= 3. 
num = [1 2 3 4];  
L = length(num)-1; 
h1 = freqz(num, 1, w); % DTFT of original ramp sequence 
% h2 contains the sample values of h1 in reverse order, but 
%   it is NOT the time reversed version of h1.  The time 
%   reversed version must be nonzero for -3 <= n <= 0.  However, 
%   h2 is nonzero for 0 <= n <= 3.  So, to get the time reversed 
%   version of h1, we still need to time SHIFT h2 to the left. 
%   This is accomplished in the frequency domain using the time 
%   shift property of the DTFT.  Thus, h3, which IS the time 
%   reversed version of h1, is obtained by multiplying h2 times 
%   a linear phase term to accomplish the required time shift. 
h2 = freqz(fliplr(num), 1, w); 
h3 = exp(w*L*i).*h2; 
% plot the magnitude spectrum of the original ramp sequence 
subplot(2,2,1) 
plot(w/pi,abs(h1));grid 
title('Magnitude Spectrum of Original Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
% plot the magnitude spectrum of the time reversed ramp sequence 
subplot(2,2,2) 
plot(w/pi,abs(h3));grid 
title('Magnitude Spectrum of Time-Reversed Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
% plot the phase spectrum of the original ramp sequence 
subplot(2,2,3) 
plot(w/pi,angle(h1));grid 
title('Phase Spectrum of Original Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
% plot the phase spectrum of the time reversed ramp sequence 
subplot(2,2,4) 
plot(w/pi,angle(h3));grid 
title('Phase Spectrum of Time-Reversed Sequence','FontSize',8) 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
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 The program implements the time-reversal operation as follows – The original ramp 
sequence is nonzero for 0 ≤ n ≤ 3.  A new sequence is formed by using fliplr; this 
new sequence contains the samples of the original ramp sequence in time reversed 
order.  However, the new sequence is still nonzero for 0 ≤ n ≤ 3, whereas the time 
reversed ramp sequence must be nonzero for -3 ≤ n ≤ 0.  This required left shift in time 
is accomplished in the frequency domain using the time shift property of the DTFT as 
follows.  First, freqz is called to set h2 equal to the DTFT of the new sequence 
obtained from calling fliplr on the original ramp sequence.  Finally, h3 is set equal 
to the DTFT of the time reversed ramp by multiplying h2 times a linear phase term to 
implement the required left shift in the time domain. 

Q3.21  The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  Both the original and time reversed 
ramp sequences are real-valued.  Therefore, they have conjugate symmetric DTFT’s.  
For both sequences, this implies that the magnitude spectrum is even symmetric and the 
phase spectrum is odd symmetric.  Now, the DTFT of the time reversed ramp (h3) is 
equal to a frequency reversed version of the DTFT of the original sequence (h1).  Since 
“flipping” an even function has no net effect, we see in the graphs above that both the 
original and time reversed sequences have identical magnitude spectra.  However, since 
the phase spectra are odd symmetric, the phase spectrum of the time reversed sequence 
is a frequency reversed version of the phase spectrum of the original sequence. 
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Q3.22  Program P3_6 was run for the following two different sets of sequences of varying lengths –  

1. Length of num = 8; num =  1 2
n
 for 0 ≤ n ≤ 7 

2.  Length of  num = 16; num =  3 4
n  for 0 ≤ n ≤ 15 

 The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  As before in Q3.20, we see that the 
DTFT of the time reversed sequence is a frequency reversed version of the DTFT of the 
original sequence.  In particular, because these are real-valued sequences with even 
magnitude spectra and odd phase spectra, the magnitude spectra of the original and 
time reversed sequences are the same.  However, the phase spectrum of the time 
reversed sequence is a frequency reversed version of the phase spectrum of the original 
sequence. 
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3.2 DISCRETE FOURIER TRANSFORM 
 
Project 3.3  DFT and IDFT Computations 
 
Answers: 
 

Q3.23  The MATLAB program to compute and plot the L-point DFT X[k] of a length-N sequence 

x[n] with L  N and then to compute and plot the IDFT of X[k] is given below: 
% Program P3_3DFT 
% Compute and plot the L-point DFT of an N-point signal, L >= N. 
clf; 
%Initialize 
N=200;  % length of signal 
L=256;  % length of DFT 
nn = [0:N-1]; 
kk = [0:L-1]; 
% the signal x 
xR = [0.1*(1:100) zeros(1,N-100)]; % real part 
xI = [zeros(1,N)]; % imag part 
x = xR + i*xI; 
% DFT 
XF = fft(x,L); 
% plot xR and xI 
subplot(3,2,1);grid; 
plot(nn,xR);grid; 
title('Re\{x[n]\}'); 
xlabel('Time index n'); 
ylabel('Amplitude'); 
subplot(3,2,2); 
plot(nn,xI);grid; 
title('Im\{x[n]\}'); 
xlabel('Time index n'); 
ylabel('Amplitude'); 
% plot real and imag parts of DFT 
subplot(3,2,3); 
plot(kk,real(XF));grid; 
title('Re\{X[k]\}'); 
xlabel('Frequency index k'); 
ylabel('Amplitude'); 
subplot(3,2,4); 
plot(kk,imag(XF));grid; 
title('Im\{X[k]\}'); 
xlabel('Frequency index k'); 
ylabel('Amplitude'); 
% IDFT 
xx = ifft(XF,L); 
% plot real and imaginary parts of the IDFT 
subplot(3,2,5); 
plot(kk,real(xx));grid; 
title('Real part of IDFT\{X[k]\}'); 
xlabel('Time index n'); 
ylabel('Amplitude'); 
subplot(3,2,6); 
plot(kk,imag(xx));grid; 
title('Imag part of IDFT\{X[k]\}'); 
xlabel('Time index n'); 
ylabel('Amplitude'); 
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 The DFT and the IDFT pairs generated by running the program for sequences of different 
lengths N and for different values of the DFT length L are shown below: 
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 From these plots we make the following observations:   In the first example, the signal is a 
real-valued ramp of length 100 zero padded on the right for a total signal length of 
N=200.  The length of the DFT is L=256.  We see that the 256-point DFT is conjugate 
symmetric as expected.  The signal obtained from the IDFT has a length of L=256, but 
is otherwise identical to the original signal up to roundoff. 

 The second example is a real-valued cosine with frequency  = /16 and length N=256.  
The length of the DFT is L=275.  The signal would be a sum of two DFT basis 
functions if N and L were equal.  However, since this is not the case, we see that there 
are more than two nonzero samples in the DFT.  Moreover, since the zero padded L-
point version of the signal does not have even symmetry, there are nonzero frequency 
samples in both the real and imaginary parts of the DFT. 

In the third example, the signal is the same as in the second example.  However, in this 
case we have N=L.  So there is no zero padding and the signal that is passed to the FFT 
routine is real and even.  Consequently, the DFT is also real and even up to roundoff.  
Moreover, in this case the signal is a simple sum of two DFT basis functions.  
Therefore, we see only two nonzero samples in the DFT array (to within roundoff). 
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Q3.24   The MATLAB program to compute the N-point DFT of two length-N real sequences using a 

single N-point DFT and compare the result by computing directly the two N-point DFTs is given 

below: 
 
% Program Q3_24 
% Use a single N-point DFT to compute simultaneously the N-point 
%   DFT's of two real-valued N-point sequences. 
clf; 
%Initialize 
N=256;  % length of signal 
nn = [0:N-1]; 
ntime = [-N/2:N/2-1]; 
g = (0.75).^abs(ntime); % signal g 
h = (-0.9).^ntime; % signal h 
% DFT's of g and h 
GF = fft(g); 
HF = fft(h); 
x = g + i*h; % the composite signal x 
% DFT of composite signal 
XF = fft(x); 
% DFT of g derived from composite DFT XF 
XFstar = conj(XF); 
XFstarmod = [XFstar(1) fliplr(XFstar(2:N))]; 
GF2 = 0.5*(XF + XFstarmod); 
HF2 = -i*0.5*(XF - XFstarmod); 
  
abs(max(GF-GF2)) 
abs(max(HF-HF2)) 
  
% plot real and imag parts of direct computation of GF 
figure(1);clf; 
subplot(2,2,1);grid; 
plot(nn,real(GF));grid; 
title('Two N-point DFT''s'); 
xlabel('Frequency index k'); 
ylabel('Re\{G[k]\}'); 
subplot(2,2,2); 
plot(nn,imag(GF));grid; 
title('Two N-point DFT''s'); 
xlabel('Frequency index k'); 
ylabel('Im\{G[k]\}'); 
% plot real and imag parts of composite computation of GF 
subplot(2,2,3);grid; 
plot(nn,real(GF2));grid; 
title('Single N-point DFT'); 
xlabel('Frequency index k'); 
ylabel('Re\{G[k]\}'); 
subplot(2,2,4); 
plot(nn,imag(GF2));grid; 
title('Single N-point DFT'); 
xlabel('Frequency index k'); 
ylabel('Im\{G[k]\}'); 
  
% plot real and imag parts of direct computation of HF 
figure(2);clf; 



30 

subplot(2,2,1);grid; 
plot(nn,real(HF));grid; 
title('Two N-point DFT''s'); 
xlabel('Freq index k'); 
ylabel('Re\{H[k]\}'); 
subplot(2,2,2); 
plot(nn,imag(HF));grid; 
title('Two N-point DFT''s'); 
xlabel('Freq index k'); 
ylabel('Im\{H[k]\}'); 
% plot real and imag parts of composite computation of HF 
subplot(2,2,3);grid; 
plot(nn,real(HF2));grid; 
title('Single N-point DFT'); 
xlabel('Freq index k'); 
ylabel('Re\{H[k]\}'); 
subplot(2,2,4); 
plot(nn,imag(HF2));grid; 
title('Single N-point DFT'); 
xlabel('Freq index k'); 
ylabel('Im\{H[k]\}'); 

 

 The DFTs generated by running the program for sequences of different lengths N are shown 

below: 
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 From these plots we make the following observations:  In the first example, the length is 
N=256.  The sequence g[n] is real and even and the sequence h[n] is real but has no 
inherent symmetry.  The DFT G[k] is real and even to within numerical roundoff; it is 
important to realize in the plots that Im{G[k]} is zero to within floating point precision.  

In the second example, the length is N=128.  The sequence g[n] is a sample function of 
an IID stochastic process uniformly distributed between +0.8 and -0.8.  The sequence 
h[n] is the product of a deterministic ramp and a deterministic decaying exponential.  

In the third example, the length is N=300.  The sequence g[n] is an alternating and 
decaying exponential, while sequence h[n] is the product of a monotonically decaying 
exponential and a cosine. 

In all three of these examples, we see that the results obtained by computing G[k] and 
H[k] with a single N-point DFT or directly with two N-point DFT’s are identical up to 
numerical roundoff. 
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Q3.25   The MATLAB program to compute the 2N-point DFT of a length-2N real sequence using a 

single N-point DFT and compare the result by computing directly the 2N-point DFT is shown 

below: 
% Program Q3_25A 
% Use a single N-point complex-valued DFT to compute the 2N-point 
%   DFT of a 2N-point real-valued sequence. 
% 
clf; 
%Initialize constants 
N = 128;           % length of the complex-valued DFT 
TwoN = 2*N;      % length of the real-valued sequence 
W2N = exp(-i*pi/N); 
k = [0:TwoN-1]; 
% create 2N-point signal v[n] 
v = (-0.7.^k); 
% create two N-point signals 
g = downsample(v,2);   % g[n] = v[2n] 
h = downsample(v,2,1); % h[n] = v[2n+1] 
% N-point complex-valued composite signal x[n] 
x = g + i*h; 
% Use one N-point complex DFT to compute simultaneously 
%   G[k] and H[k] as in Q3.24. 
XF = fft(x);    % N-point complex DFT of x[n] 
% DFT's G[k] and H[k] derived from composite DFT X[k] 
XFstar = conj(XF); 
XFstarmod = [XFstar(1) fliplr(XFstar(2:N))]; 
GF = 0.5*(XF + XFstarmod); 
HF = -i*0.5*(XF - XFstarmod); 
% 2N-point DFT V[k] 
VF = [GF GF] + (W2N.^k).*[HF HF]; 
% For Comparison, compute directly the 2N-point DFT V[k] 
VF2 = fft(v); 
% Print Sanity Check 
abs(max(VF-VF2)) 
% plot real and imag parts of V[k] computed by complex N-point DFT 
subplot(2,2,1); 
plot(k,real(VF));grid; 
title('Complex N-point DFT'); 
xlabel('Frequency index k'); 
ylabel('Re\{V[k]\}'); 
subplot(2,2,2); 
plot(k,imag(VF));grid; 
title('Complex N-point DFT'); 
xlabel('Frequency index k'); 
ylabel('Im\{V[k]\}'); 
% plot real and imag parts of V[k] computed by 2N-point DFT 
subplot(2,2,3); 
plot(k,real(VF2));grid; 
title('Real 2N-point DFT'); 
xlabel('Frequency index k'); 
ylabel('Re\{V[k]\}'); 
subplot(2,2,4); 
plot(k,imag(VF2));grid; 
title('Real 2N-point DFT'); 
xlabel('Frequency index k'); 
ylabel('Im\{V[k]\}'); 
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 The DFTs generated by running the program for sequences of different lengths 2N are shown 
below: 
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 From these plots we make the following observations:  In the first example, the length of 
v[n] is 256 and V[k]is computed using a complex valued 128-point DFT.  The signal 
is [ ] ( 0.7)nv n   .  In the second example, the length of v[n] is 1000 and V[k]is 
computed using a complex valued 500-point DFT.  The signal is 

 [ ] 0.8 cos 25nv n n  .  In the third example, the length of v[n] is 600 and V[k]is 

computed using a complex valued 600-point DFT.  In each case, the results obtained by 
the 2N-point real DFT and by the N-point complex DFT are identical up to numerical 
roundoff. 

Project 3.4 DFT Properties 

Answers: 

Q3.26  The purpose of the command rem in the function circshift is – rem(x,y) is the 
remainder  after x is divided by y. 

Q3.27  The function circshift operates as follows:  The input sequence x is circularly shifted 
left by M positions.  If  M > 0, then circshift removes the leftmost M elements from 
the vector x and appends them on the right side of the remaining elements to obtain the 
circularly shifted sequence.  If If  M < 0, then circshift first complements M by the 
length of x, i.e., the rightmost length(x)-M samples are removed from x and appended 
on the right of the remaining M samples to obtain the circularly shifted sequence. 
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Q3.28  The purpose of the operator ~= in the function circonv is –  This is the binary relational 
NOT EQUAL operator.  A ~= B returns the value 1 if A and B are unequal and the 
value 0 if A and B are equal. 

Q3.29  The function circonv operates as follows:  The input is two vectors x1 and x2 of equal 
length L.  To understand how circonv works, it is useful to think in terms of the 
periodic extension of x2.  Let x2p be the infinite-length periodic extension of x2.  
Conceptually, the routine time reverses x2p and sets x2tr equal to elements 1 through L 
of the time reversed version of x2p.  Elements 1 through L of the output vector y are 
then obtained by taking the inner product between x1 and a length L vector sh obtained 
by circularly shifting right the time reversed vector x2tr.  For the output sample y[n], 1 
≤ n ≤ L, the amount of the right circular shift is n-1 positions. 

Q3.30  The modified Program P3_7 created by adding appropriate comment statements, and adding 
program statements for labeling each plot being generated by the program is given below: 

 
% Program P3_7B 
% Illustration of Circular Shift of a Sequence 
clf; 
% initialize shift amount M 
M = 6; 
% initialize sequence a to be shifted 
a = [0 1 2 3 4 5 6 7 8 9]; 
b = circshift(a,M); % perform the circular shift 
L = length(a)-1; 
% plot the original sequence a and the circularly shifted sequence b 
n = 0:L; 
subplot(2,1,1); 
stem(n,a);axis([0,L,min(a),max(a)]); 
title('Original Sequence'); 
xlabel('time index n'); 
ylabel('a[n]'); 
subplot(2,1,2); 
stem(n,b);axis([0,L,min(a),max(a)]); 
title(['Sequence Obtained by Circularly Shifting by ',num2str(M),' 
Samples']); 
xlabel('time index n'); 
ylabel('b[n]'); 

 

 The parameter determining the amount of time-shifting is -  M 

 If the amount of time-shift is greater than the sequence length then – The circular shift 
actually implemented is rem(M,length(a)) positions left, which is equivalent to 
circularly shifting by M positions (more than once around) and also to shifting left by 
M the periodic extension of the sequence. 
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Q3.31  The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  Here, the length of the sequence is 
10 samples and we have M=12.  This may be interpreted alternatively as a circular shift 
left by 12 positions (more than once around), as a circular shift left by 12-10 = 2 
positions, or as a linear shift left by 2 or by 12 of the periodic extension of the 
sequence. 
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Q3.32  The modified Program P3_8 created by adding appropriate comment statements, and adding 
program statements for labeling each plot being generated by the program is given below: 

 
% Program P3_8B 
% Circular Time-Shifting Property of DFT 
clf; 
x = [0 2 4 6 8 10 12 14 16]; % original sequence x 
N = length(x)-1; n = 0:N;    % time index vector 
% set y equal to the circular shift left of x 
y = circshift(x,5); 
XF = fft(x);          % DFT of x 
YF = fft(y);          % DFT of y 
subplot(2,2,1); 
% plot the spectral magnitudes of the original and shifted sequences 
stem(n,abs(XF));grid; 
title('Magnitude of DFT of Original Sequence'); 
xlabel('Frequency index k'); 
ylabel('|X[k]|'); 
subplot(2,2,2); 
stem(n,abs(YF));grid; 
title('Magnitude of DFT of Circularly Shifted Sequence'); 
xlabel('Frequency index k'); 
ylabel('|Y[k]|'); 
% plot the spectral phases of the original and shifted sequences 
subplot(2,2,3); 
stem(n,angle(XF));grid; 
title('Phase of DFT of Original Sequence'); 
xlabel('Frequency index k'); 
ylabel('arg(X[k])'); 
subplot(2,2,4); 
stem(n,angle(YF));grid; 
title('Phase of DFT of Circularly Shifted Sequence'); 
xlabel('Frequency index k'); 
ylabel('arg(Y[k])'); 
  

 

 The amount of time-shift is -   hard coded in this program at 5 samples to the left. 

Q3.33  The plots generated by running the modified program are given below: 
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 From these plots we make the following observations:  The length of the sequence is N=8 
and the time shift is an advance by five samples to the left.  The phase term introduced 
by this time shift is 0 5 10 /8 5 / 4kn k jk jk

N NW W e e     .  This is a substantial shift that 

dramatically increases the slope of the spectral phase.  Whereas the original phase 
function has only one branch cut, there are five branch cuts in the spectral phase of the 
shifted signal. 

Q3.34   The plots generated by running the modified program for the following two different amounts of 
time-shifts, with the amount of shift indicated, are shown below: 
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 From these plots we make the following observations:  In all cases, the spectral magnitude 
is not affected by the shift.  For the first example, the time shift is a circular shift left by 
2 samples.  This introduces an increased slope to the spectral phase that is significantly 
less than what we saw in Q3.33.  In the second example, the shift is circular shift right 
by 2 samples (M=-2).  This cancels the positive slope seen in the spectral phase of the 
original sequences and results in a moderate negative slope. 

Q3.35   The plots generated by running the modified program for the following two different sequences 
of different lengths, with the lengths indicated, are shown below: 
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Length = 16 
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 From these plots we make the following observations:  In the first example, the sequence is 
real and periodically (circularly) even, so the phase takes only the two values zero and 
.  The shift is a circular shift to the right by 2 (M=-2), which is seen to induce a 
negative slope to the phase.  In the second example, the signal is given by ( 0.75)n  and 
the shift is again M=-2 which again introduces a negative slope in the phase. 

Q3.36  A copy of Program P3_9 is given below along with the plots generated by running this program: 
 
% Program P3_9 
% Circular Convolution Property of DFT 
g1 = [1 2 3 4 5 6]; g2 = [1 -2 3 3 -2 1]; 
ycir = circonv(g1,g2); 
disp('Result of circular convolution = ');disp(ycir) 
G1 = fft(g1); G2 = fft(g2); 
yc = real(ifft(G1.*G2)); 
disp('Result of IDFT of the DFT products = ');disp(yc) 
 
 

Result of circular convolution =  
    12    28    14     0    16    14 

 
Result of IDFT of the DFT products =  

    12    28    14     0    16    14 
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 From these plots we make the following observations:  The DFT of a circular convolution is 
the pointwise products of the DFT’s. 

Q3.37   Program P3_9 was run again for the following two different sets of equal-length sequences: 

 The plots generated are shown below: 

Result of circular convolution =  

     9     2    -7     6     9     4 

Result of IDFT of the DFT products =  

    9.0000    2.0000   -7.0000    6.0000    9.0000    4.0000 

 From these plots we make the following observations:  The circular convolution property of 
the DFT seems to hold. 

Q3.38  A copy of Program P3_10 is given below along with the plots generated by running this 
program: 

 
% Program P3_10 
% Linear Convolution via Circular Convolution 
g1 = [1 2 3 4 5];g2 = [2 2 0 1 1]; 
g1e = [g1 zeros(1,length(g2)-1)]; 
g2e = [g2 zeros(1,length(g1)-1)]; 
ylin = circonv(g1e,g2e); 
disp('Linear convolution via circular convolution = ');disp(ylin); 
y = conv(g1, g2); 
disp('Direct linear convolution = ');disp(y) 
  

Linear convolution via circular convolution =  

     2     6    10    15    21    15     7     9     5 

Direct linear convolution =  

     2     6    10    15    21    15     7     9     5 

 From these plots we make the following observations:  zero padding to the appropriate 
length does indeed make it possible to implement linear convolution using circular 
convolution. 

Q3.39 Program P3_10 was run again for the following two different sets of sequences of unequal 
lengths: 

g1 = [3 1 4 1 5 9 2]; 
 

g2 = [1 1 1 0 0]; 
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g1 = [5 4 3 2 1 0]; 
 

g2 = [-2 1 2 3 4]; 
 

The plots generated are shown below: 
 

Linear convolution via circular convolution =  
     3     4     8     6    10    15    16    11     2     0     0 

 
Direct linear convolution =  

     3     4     8     6    10    15    16    11     2     0     0 
 
 

Linear convolution via circular convolution =  
   -10    -3     8    22    38    30    20    11     4     0 

 
Direct linear convolution =  

   -10    -3     8    22    38    30    20    11     4     0 

 From these plots we make the following observations:  You can implement the linear 
convolution of two sequences by zero padding them to the sum of their lengths less one 
and then invoking circular convolution on the zero padded sequences. 

Q3.40   The MATLAB program to develop the linear convolution of two sequences via the DFT of each is 
given below: 

 
% Program Q3_40 
% Linear Convolution via Circular Convolution 
g1 = [1 2 3 4 5]; 
g2 = [2 2 0 1 1]; 
g1e = [g1 zeros(1,length(g2)-1)]; 
g2e = [g2 zeros(1,length(g1)-1)]; 
G1EF = fft(g1e); 
G2EF = fft(g2e); 
ylin = real(ifft(G1EF.*G2EF)); 
disp('Linear convolution via DFT = ');disp(ylin); 
  

 The plots generated by running this program for the sequences of Q3.38 are shown below: 

Linear convolution via DFT =  

    2.0000    6.0000   10.0000   15.0000   21.0000   15.0000    7.0000    9.0000 

 From these plots we make the following observations:  The result is the same as before in 
Q3.38; in other words, it works as advertised. 
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The plots generated by running this program for the sequences of Q3.39 are shown below: 

Linear convolution via DFT =  

Columns 1 through 9 

3.0000    4.0000    8.0000    6.0000   10.0000   15.0000   16.0000   11.0000    2.0000 

Columns 10 through 11 

0.0000    0.0000 

 

Linear convolution via DFT =  

Columns 1 through 9  

 -10.0000   -3.0000    8.0000   22.0000   38.0000   30.0000   20.0000   11.0000    4.0000 

Column 10  

  -0.0000 

 

 From these plots we make the following observations:  The results are the same as those that 
were obtained before when the DFT was not used. 

Q3.41  A copy of Program P3_11 is given below: 
 
% Program P3_11 
% Relations between the DFTs of the Periodic Even 
% and Odd Parts of a Real Sequence 
x = [1 2 4 2 6 32 6 4 2 zeros(1,247)]; 
x1 = [x(1) x(256:-1:2)]; 
xe = 0.5 *(x + x1); 
XF = fft(x); 
XEF = fft(xe); 
clf; 
k = 0:255; 
subplot(2,2,1); 
plot(k/128,real(XF)); grid; 
ylabel('Amplitude'); 
title('Re(DFT\{x[n]\})'); 
subplot(2,2,2); 
plot(k/128,imag(XF)); grid; 
ylabel('Amplitude'); 
title('Im(DFT\{x[n]\})'); 
subplot(2,2,3); 
plot(k/128,real(XEF)); grid; 
xlabel('Time index n');ylabel('Amplitude'); 
title('Re(DFT\{x_{e}[n]\})'); 
subplot(2,2,4); 
plot(k/128,imag(XEF)); grid; 



47 

xlabel('Time index n');ylabel('Amplitude'); 
title('Im(DFT\{x_{e}[n]\})'); 
  

 

 The relation between the sequence x1[n] and x[n] is – x1[n] is a periodically time 
reversed version of x[n]. 

  
Q3.42  The plots generated by running Program P3_11 are given below: 
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 The imaginary part of XEF is equal to zero to within floating point precision.  This result can be 
explained as follows:  The real part of the transform of x[n] is the transform of the 
periodically even part of x[n].  Therefore, the DFT of the periodically even part of x[n] 
has a real part that is precisely the real part of X[k] and an imaginary part that is zero. 
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Q3.43  The required modifications to Program P3_11 to verify the relation between the DFT of the 
periodic odd part and the imaginary part of XEF are given below along with the plots generated 
by running this program: 

 
% Program P3_11B 
% Relations between the DFTs of the Periodic Even 
% and Odd Parts of a Real Sequence 
x = [1 2 4 2 6 32 6 4 2 zeros(1,247)]; 
x1 = [x(1) x(256:-1:2)]; 
xo = 0.5 *(x - x1); 
XF = fft(x); 
XOF = fft(xo); 
clf; 
k = 0:255; 
subplot(2,2,1); 
plot(k/128,real(XF)); grid; 
ylabel('Amplitude'); 
title('Re(DFT\{x[n]\})'); 
subplot(2,2,2); 
plot(k/128,imag(XF)); grid; 
ylabel('Amplitude'); 
title('Im(DFT\{x[n]\})'); 
subplot(2,2,3); 
plot(k/128,real(XOF)); grid; 
xlabel('Time index n');ylabel('Amplitude'); 
title('Re(DFT\{x_{o}[n]\})'); 
subplot(2,2,4); 
plot(k/128,imag(XOF)); grid; 
xlabel('Time index n');ylabel('Amplitude'); 
title('Im(DFT\{x_{o}[n]\})'); 
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 From these plots we make the following observations:  The DFT of the periodically odd part 
of x[n] is precisely the imaginary part of the DFT of x[n].  Therefore, the DFT of the 
periodically odd part of x[n] has a real part that is zero to within floating point precision 
and an imaginary part that is precisely the imaginary part of the DFT of x[n]. 

Q3.44  A copy of Program P3_12 is given below: 
 
% Program P3_12 
% Parseval's Relation 
x = [(1:128) (128:-1:1)]; 
XF = fft(x); 
a = sum(x.*x) 
b = round(sum(abs(XF).^2)/256) 
  

 The values for a and b we get by running this program are –  

a =1414528 

b =1414528 
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Q3.45  The required modifications to Program  P3_11 are given below: 
 
% Program P3_12B 
% Parseval's Relation 
x = [(1:128) (128:-1:1)]; 
XF = fft(x); 
a = sum(x.*x) 
b = round(sum(XF.*conj(XF))/256) 
  

3.3 z-TRANSFORM 

Project 3.5  Analysis of z-Transforms 

Answers: 
 
Q3.46  The frequency response of the z-transform obtained using Program P3_1 is plotted below: 
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Q3.47  The MATLAB program to compute and display the poles and zeros, to compute and display the 
factored form, and to generate the pole-zero plot of a rational z-transform is given below: 

 
% Program Q3_47 
% Given numerator and denominator coefficient vectors for G(z), 
%   - compute and display poles and zeros 
%   - compute and display factored form of G(z) 
%   - generate pole-zero plot 
% NOTE: the lab book says to use tf2zp.  For a rational function 
%   in z^-1, it's better to use tf2zpk. 
clf; 
%  initialize 
num = [2  5 9 5 3]; 
den = [5 45 2 1 1]; 
% compute poles and zeros and display 
[z p k] = tf2zpk(num,den); 
disp('Zeros:'); 
disp(z); 
disp('Poles:'); 
disp(p); 
input('Hit <return> to continue...'); 
% compute and display factored form of G(z) 
[sos k] = zp2sos(z,p,k) 
input('Hit <return> to continue...'); 
% generate pole-zero plot 
zplane(z,p); 

 

 



52 

 Using this program we obtain the following results on the z-transform G(z) of Q3.46: 
Zeros: 
  -1.0000 + 1.4142i 
  -1.0000 - 1.4142i 
  -0.2500 + 0.6614i 
  -0.2500 - 0.6614i 

 
Poles: 
  -8.9576           
  -0.2718           
   0.1147 + 0.2627i 
   0.1147 - 0.2627i 
 
sos = 
    1.0000    2.0000    3.0000    1.0000    9.2293    2.4344 
    1.0000    0.5000    0.5000    1.0000   -0.2293    0.0822 
 
 
k = 
    0.4000 
 

1 2 1 2

1 2 1 2

1 2 3 1 0.5 0.5
( ) 0.4

1 9.2293 2.4344 1 0.2293 0.0822

z z z z
G z

z z z z

   

   

   


   
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Q3.48  From the pole-zero plot generated in Question Q3.47, the number of regions of convergence 
(ROC) of G(z) are -  FOUR.  note: the magnitude of the complex conjugate poles 
inside the unit circle is 0.2866. 

 All possible ROCs of this z-transform are sketched below: 

1 : | | 0.2718R z                           (left-sided, not stable) 

2 : 0.2718 | | 0.2866R z      (two-sided, not stable) 

3 : 0.2866 | | 8.9576R z      (two-sided, stable) 

4 : | | 8.9576R z                           (right-sided, not stable) 

 From the pole-zero plot it can be seen that the DTFT – You cannot tell if the DTFT exists 
from the pole zero plot alone.  In order to know this, the region of convergence must be 
specified.  The DTFT does exist for the sequence obtained by using the ROC 3R  shown 

above.  This would be a stable system with a two-sided impulse response. 
 
Q3.49  The MATLAB program to compute and display the rational z-transform from its zeros, poles and 

gain constant is given below: 
 
% Program Q3_49 
% Given the poles and zeros of G(z), compute and display the rational 
% z-transform. 
clf; 
%  initialize 
z = [0.3 2.5 -0.2+i*0.4 -0.2-i*0.4]'; 
p = [0.5 -0.75 0.6+i*0.7 0.6-i*0.7]'; 
k = 3.9; 
% find numerator and denominator polynomial coefficients 
[num den] = zp2tf(z,p,k) 

 

 The rational form of a z-transform with the given poles, zeros, and gain is found to be –  
num = 
    3.9000   -9.3600   -0.6630   -1.0140    0.5850 
 
den = 
    1.0000   -0.9500    0.1750    0.6625   -0.3187 
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( )
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z z z z
G z

z z z z

   

   

   


   
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Project 3.6 Inverse z-Transform 

Answers: 

Q3.50  The MATLAB program to compute the first L samples of the inverse of a rational z-transform is 

given below: 
 
% Program Q3_50 
% Given numerator and denominator coefficient vectors for G(z), 
% find and plot the first L samples of the impulse response, where 
% the parameter L is input by the user. 
%  
clf; 
%  initialize 
num = [2  5 9 5 3]; 
den = [5 45 2 1 1]; 
% Query user for parameter L 
L = input('Enter the number of samples L: '); 
% find impulse response 
[g t] = impz(num,den,L); 
%plot the impulse response 
stem(t,g); 
title(['First ',num2str(L),' samples of impulse response']); 
xlabel('Time Index n'); 
ylabel('h[n]'); 

 The plot of the first 50 samples of the inverse of G(z) of Q3.46 obtained using this program is 

sketched below: 
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Q3.51  The MATLAB program to determine the partial-fraction expansion of a rational z-transform is 
given below: 

 
% Program Q3_51 
% Given numerator and denominator coefficient vectors for G(z), 
% find and plot the first L samples of the impulse response, where 
% the parameter L is input by the user. 
%  
clf; 
%  initialize 
num = [2  5 9 5 3]; 
den = [5 45 2 1 1]; 
% partial fraction expansion 
[r p k] = residuez(num,den) 

 

 The partial-fraction expansion of G(z) of Q3.46 obtained using this program is shown below: 
r = 
   0.3109           
  -1.0254 - 0.3547i 
  -1.0254 + 0.3547i 
  -0.8601           
p = 
  -8.9576           
   0.1147 + 0.2627i 
   0.1147 - 0.2627i 
  -0.2718           
k = 
     3 
 

1 1 1 1

0.3109 1.0254 0.3547 1.0254 0.3547 0.8601
( ) 3

1 8.9576 1 (0.1147 0.2627 ) 1 (0.1147 0.2627 ) 1 0.2718

j j
G z

z j z j z z   

   
    

     
 

  

 

From the above partial-fraction expansion we arrive at the inverse z-transform g[n] as shown below: 
 
Three of the terms are straightforward to invert from the z-transform table on page 110 of the 
Oppenheim & Schafer textbook: 
 

1

0.3109
0.3109( 8.9576) [ ]

1 8.9576
n u n

z  


Z  

 

1

0.8601
0.8601( 0.2718) [ ]

1 0.2718
n u n

z  


Z  
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3 3 [ ]n Z  
 

There remains the term 
 

 
1 1

1.0254 0.3547 1.0254 0.3547
.

1 (0.1147 0.2627 ) 1 (0.1147 0.2627 )

j j

j z j z 

   


   
 (1.1) 

 
Let 1.0254 0.3547a j    and 0.1147 0.2627 .b j    To save writing, let Re[ ]Ra a , 

Im[ ]Ia a , Re[ ]Rb b , and Im[ ].Ib b  The term (1.1) may then be written as 

 

 
1 1

.
1 1

a a

bz b z



  
 

 (1.2) 

 
After some algebra, (1.2) can be simplified to 
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 
 

   


 

   


 

   

 (1.3) 

 
Making the associations | |r b  and 0 argb  , we obtain 0cos( )Rb r   and 

0sin( )Ib r  , whereupon (1.3) may be written as 

 

 
1 1

0 0
1 1 1 2 2 1 2 2

0 0

1 cos( ) sin( )
2 2 .

1 1 1 2 cos( ) 1 2 cos( )R I

r z r za a
a a

bz b z r z r z r z r z

 

      

  
  

       
 (1.4) 

 
These are the entries on lines 11 and 12 of the z-transform table on page 110 of the text.  
Therefore, the inverse z-transform of (1.4) is given by 
 
 0 02 cos( ) [ ] 2 sin( ) [ ].n n

R Ia r n u n a r n u n    (1.5) 

 
Plugging back into (1.5) the definitions of a , b , r , and 0 , we have for the inverse z-

transform of the term (1.1) 
 

2.0508(0.2866) cos(1.1592 ) [ ] 0.7094(0.2866) sin(1.1592 ) [ ].n nn u n n u n   
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All together, the required inverse z-transform is given by 
 

[ ] 0.3109( 8.9576) [ ] 2.0508(0.2866) cos(1.1592 ) [ ]

0.7094(0.2866) sin(1.1592 ) [ ] 0.8601( 0.2718) [ ] 3 [ ]

n n

n n

g n u n n u n

n u n u n n

  

    
 

 
 
 
 
An alternate but equivalent solution may be obtained by inverting the two terms in (1.1) 
individually.  Let 
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Then  
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This results in the alternate but equivalent solution 

[ ] 0.3109( 8.9576) [ ] 2.1700(0.2866) cos(1.1592 2.8086) [ ] 0.8601( 0.2718) [ ] 3 [ ]n n ng n u n n u n u n n       
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