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Name: SOLUTION 

Section: 

Laboratory Exercise 7 
DIGITAL FILTER DESIGN 

7.1 DESIGN OF IIR FILTERS 

Project 7.1 Estimation of IIR Filter Order 

Answers: 
From the problem statement of Q7.1, we have 40 kHz,TF =  4 kHz,pF = 8 kHz,sF =  

0.5 dB,pR = and 40 dB.sR =  

Q7.1  The normalized passband edge angular frequency Wp is – 
( )3

3

2 4 102
0.2 .

40 10 5
p

p
T

F
F

π ×π π
ω = = = = π

×
 

0.2 0.2pω π
π π

= = =Wp  

 The normalized stopband edge angular frequency Ws is – 
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 The desired passband ripple Rp is -  0.5 dB 

 The desired stopband ripple Rs is – 40 dB 

 (1) Using these values and buttord we get the lowest order for a Butterworth lowpass filter 

to be – the correct call is [N, Wn] = buttord(0.2,0.4,0.5,40).  This gives 

N=8. 

 The corresponding normalized passband edge frequency Wn is - 0.2469,  or 0.2469 .nω π=  

 (2) Using these values and cheb1ord we get the lowest order for a Type 1 Chebyshev 

lowpass filter to be -  the correct call is  

  [N, Wn] = cheb1ord(0.2,0.4,0.5,40).  This gives N=5. 

 The corresponding normalized passband edge frequency Wn is -  0.2000,  or 0.2000 .nω π=  
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 (3) Using these values and cheb2ord we get the lowest order for a Type 2 Chebyshev 

lowpass filter to be - the correct call is 

  [N, Wn] = cheb2ord(0.2,0.4,0.5,40).  This gives N=5. 

 The corresponding normalized passband edge frequency Wn is -  0.4000,  or 0.4000 .nω π=  

 (4) Using these values and ellipord we get the lowest order for an elliptic lowpass filter to 

be -  the correct call is [N, Wn] = ellipord(0.2,0.4,0.5,40).  This gives 

N=4 and  Wn = 0.2000 or  0.2000nω = π . 

 From the above results we observe that the Elliptic filter has the lowest order meeting the 

specifications. 

Q7.2  The normalized passband edge angular frequency Wp is – 
( )3
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 The normalized stopband edge angular frequency Ws is – 
( )3
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 The desired passband ripple Rp is – 1.0 dB. 

 The desired stopband ripple Rs is – 50 dB. 

 (1) Using these values and buttord we get the lowest order for a Butterworth highpass filter 

to be – the correct call is [N, Wn] = buttord(Wp,Ws,Rp,Rs).  This gives 

N=8. 

 The corresponding normalized passband edge frequency Wn is – Wn = 0.5646, or 

0.5646 .nω π=  

 (2) Using these values and cheb1ord we get the lowest order for a Type 1 Chebyshev 

highpass filter to be – the correct call is [N,Wn] = cheb1ord(Wp,Ws,Rp,Rs).  

This gives N=5. 
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 The corresponding normalized passband edge frequency Wn is – Wn = 0.6000, or 

0.6000 .nω π=  

 (3) Using these values and cheb2ord we get the lowest order for a Type 2 Chebyshev 

highpass filter to be – the correct call is [N,Wn] = cheb2ord(Wp,Ws,Rp,Rs).  

This gives N=5. 

 The corresponding normalized passband edge frequency Wn is – Wn = 0.3429, or 

0.3429 .nω π=  

 (4) Using these values and ellipord we get the lowest order for an elliptic highpass filter to 

be – the correct call is [N,Wn] = ellipord(Wp,Ws,Rp,Rs).  This gives N=4.  

The corresponding normalized passband edge frequency Wn is – Wn = 0.6000, or 

0.6000 .nω π=  

 From the above results we observe that the Elliptic filter has the lowest order meeting the 

specifications. 

Q7.3  The normalized passband edge angular frequency Wp is – 
( )3
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Wp = [Wp1 Wp2] = [0.4000 0.6000] 

 The normalized stopband edge angular frequency Ws is – 
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,2 0.7 0.7sω π
π π

= = =Ws2  

Ws = [Ws1 Ws2] = [0.3000 0.7000] 

 

 The desired passband ripple Rp is – 0.4 dB. 

 The desired stopband ripple Rs is – 50 dB. 

 (1) Using these values and buttord we get the lowest order for a Butterworth bandpass 

filter to be – the correct call is [N,Wn] = buttord(Wp,Ws,Rp,Rs) = 

buttord([0.4000 0.6000],[0.3000 0.7000],0.4,50), which gives 

Order = 2N = 18. 

 The corresponding normalized passband edge frequency Wn is –  

Wn = [0.3835 0.6165], or 

,1 0.3835nω π=  and ,2 0.6165 .nω π=  

 (2) Using these values and cheb1ord we get the lowest order for a Type 1 Chebyshev 

bandpass filter to be – the correct call is [N,Wn] = cheb1ord(Wp,Ws,Rp,Rs) = 

cheb1ord([0.40000 0.6000],[0.3000 0.7000],0.4,50), which gives 

Order = 2N = 12. 

 The corresponding normalized passband edge frequency Wn is –  

Wn = [0.4000 0.6000], or 

,1 0.4000nω π=  and ,2 0.6000 .nω π=  

 

 (3) Using these values and cheb2ord we get the lowest order for a Type 2 Chebyshev 

bandpass filter to be – the correct call is [N,Wn] = cheb2ord(Wp,Ws,Rp,Rs) = 

cheb2ord([0.4000 0.6000],[0.3000 0.7000],0.4,50), which gives 

Order = 2N = 12. 

 The corresponding normalized passband edge frequency Wn is –  

Wn = [0.3000 0.7000], or 

,1 0.3000nω π=  and ,2 0.7000 .nω π=  
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 (4) Using these values and ellipord we get the lowest order for an elliptic bandpass filter 

to be – the correct call is [N,Wn] = ellipord(Wp,Ws,Rp,Rs) = 

ellipord([0.4000 0.6000],[0.3000 0.7000],0.4,50), which gives 

Order = 2N = 8.  

 The corresponding normalized passband edge frequency Wn is –  

Wn = [0.4000 0.6000], or 

,1 0.4000nω π=  and ,2 0.6000 .nω π=  

 

 From the above results we observe that the Elliptic filter has the lowest order meeting the 

specifications. 

Q7.4  The normalized passband edge angular frequency Wp is – 
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 The normalized stopband edge angular frequency Ws is – 
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 The desired passband ripple Rp is – Rp = 0.6 dB. 

 The desired stopband ripple Rs is – Rs = 45 dB. 
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 (1) Using these values and buttord we get the lowest order for a Butterworth bandstop filter 

to be – the correct call is [N,Wn] = buttord(Wp,Ws,Rp,Rs) = 

buttord([0.3500 0.7500],[0.4500 0.6500],0.6,45), which gives 

Order = 2N = 18. 

 The corresponding normalized passband edge frequent Wn is –  

Wn = [0.3783 0.7123], or 

,1 0.3783nω π=  and ,2 0.7123 .nω π=  

 (2) Using these values and cheb1ord we get the lowest order for a Type 1 Chebyshev 

bandstop filter to be – the correct call is [N,Wn] = cheb1ord(Wp,Ws,Rp,Rs) = 

cheb1ord([0.3500 0.7500],[0.4500 0.6500],0.6,45), which gives 

Order = 2N = 10. 

 The corresponding normalized passband edge frequency Wn is –  

Wn = [0.3500 0.7500], or 

,1 0.3500nω π=  and ,2 0.7500 .nω π=  

 (3) Using these values and cheb2ord we get the lowest order for a Type 2 Chebyshev 

bandstop filter to be – the correct call is [N,Wn] = cheb2ord(Wp,Ws,Rp,Rs) = 

cheb2ord([0.3500 0.7500],[0.4500 0.6500],0.6,45), which gives 

Order = 2N = 10. 

 The corresponding normalized passband edge frequency Wn is –  

Wn = [0.4500 0.6500], or 

,1 0.4500nω π=  and ,2 0.6500 .nω π=  

 (4) Using these values and ellipord we get the lowest order for an elliptic bandstop filter to 

be – the correct call is [N,Wn] = ellipord(Wp,Ws,Rp,Rs) = 

ellipord([0.3500 0.7500],[0.4500 0.6500],0.6,45), which gives 

Order = 2N = 8.  

 The corresponding normalized passband edge frequency Wn is –  

Wn = [0.3500 0.7500], or 
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,1 0.3500nω π=  and ,2 0.7500 .nω π=  

 

 From the above results we observe that the Elliptic filter has the lowest order meeting the 

specifications. 

Project 7.2  IIR Filter Design 

 A copy of Program P7_1 is given below: 
 
% Program P7_1 
% Design of a Butterworth Bandstop Digital Filter 
Ws = [0.4 0.6]; Wp = [0.2 0.8]; Rp = 0.4; Rs = 50; 
% Estimate the Filter Order 
[N1, Wn1] = buttord(Wp, Ws, Rp, Rs);  
% Design the Filter 
[num,den] = butter(N1,Wn1,'stop');  
% Display the transfer function 
disp('Numerator Coefficients are ');disp(num); 
disp('Denominator Coefficients are ');disp(den); 
% Compute the gain response 
[g, w] = gain(num,den);  
% Plot the gain response 
plot(w/pi,g);grid  
axis([0 1 -60 5]); 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response of a Butterworth Bandstop Filter'); 

Answers: 
Q7.5  The coefficients of the Butterworth bandstop transfer function generated by running Program 

P7_1 are as follows: 
Numerator Coefficients are  
 
  Columns 1 through 9  
    0.0493  0.0000  0.2465  0.0000  0.4930  0.0000  0.4930  0.0000  0.2465 
 
  Columns 10 through 11  
 

0.0 0.0493 
 
Denominator Coefficients are  
 
  Columns 1 through 9  
 
    1.0000  0.0000 -0.0850  0.0000  0.6360  0.0000 -0.0288  0.0000  0.0561 
 
  Columns 10 through 11  
 
    0.0000  -0.0008 

 The exact expression for the transfer function is – 

 
2 4 6 8 10
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1 0.0850 0.6360 0.0288 0.0561 0.0008

z z z z zH z
z z z z z

− − − − −

− − − − −

+ + + + +
=

− + − + −
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 The filter specifications are: 1 0.2pω = π , 1 0.4sω = π , 2 0.6sω = π , 2 0.8pω = π , 

0.4 dB,pR = and 50 dB.sR =  

 The gain response of the filter as designed is given below: 
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 From the plot we conclude that the design MEETS the specifications. 

   The plot of the unwrapped phase response and the group delay response of this filter is given 

below: 
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Here is the program to find and plot the unwrapped phase response and group delay: 
 
% Program Q7_5B 
% Design of a Butterworth Bandstop Digital Filter for Q7.5. 
% Plot the unwrapped phase and the group delay. 
Ws = [0.4 0.6]; Wp = [0.2 0.8]; Rp = 0.4; Rs = 50; 
% Estimate the Filter Order 
[N1, Wn1] = buttord(Wp, Ws, Rp, Rs);  
% Design the Filter 
[num,den] = butter(N1,Wn1,'stop');  
% Find the frequency response; find and plot unwrapped phase 
wp = 0:pi/1023:pi; 
wg = 0:pi/511:pi; 
Hz = freqz(num,den,wp); 
Phase = unwrap(angle(Hz)); 
figure(1); 
plot(wp/pi,Phase); 
grid; 
% axis([0 1 a b]); 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response of a Butterworth Bandstop Filter'); 
% Find and plot the group delay 
GR = grpdelay(num,den,wg); 
figure(2); 
plot(wg/pi,GR); 
grid; 
%axis([0 1 a b]); 
xlabel('\omega /\pi'); ylabel('Group Delay (sec)'); 
title('Group Delay of a Butterworth Bandstop Filter'); 
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Here is the modified version of Program P7_1 to answer Q7.6: 
 
% Program Q7_6 
% Design of a Chebyshev Type 1 Lowpass Digital Filter 
% meeting the design specification given in Q7.1. 
% - Print out the numerator and denominator coefficients 
%   for the transfer function. 
% - Compute and plot the gain function. 
% - Compute and plot the unwrapped phase response. 
% - Compute and plot the group delay. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Design spec as given in Q7.1. 
FT = 40*10^3;      % sampling freq 
Fp =  4*10^3;      % analog passband edge freq 
Fs =  8*10^3;      % analog stopband edge freq 
Rp = 0.5;          % max passband ripple, dB 
Rs = 40;           % min stopband attenuation, dB 
% Convert spec to normalized digital frequencies 
omega_p = 2*pi*Fp/FT; 
Wp = 2*Fp/FT;         % omega_p/pi 
omega_s = 2*pi*Fs/FT; 
Ws = 2*Fs/FT;         % omega_s/pi 
% Estimate the Filter Order 
[N, Wn] = cheb1ord(Wp, Ws, Rp, Rs);  
% Design the Filter 
[num,den] = cheby1(N,Rp,Wn);  
% Display the transfer function 
disp('Numerator Coefficients are ');disp(num); 
disp('Denominator Coefficients are ');disp(den); 
% Compute the gain response 
[g, w] = gain(num,den);  
% Plot the gain response 
figure(1); 
plot(w/pi,g);grid; 
axis([0 1 -60 5]); 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response of a Type 1 Chebyshev Lowpass Filter'); 
% Find and plot the phase 
figure(2); 
w2 = 0:pi/511:pi; 
Hz = freqz(num,den,w2); 
Phase = unwrap(angle(Hz)); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response of a Type 1 Chebyshev Lowpass Filter'); 
% Find and plot the group delay 
figure(3); 
GR = grpdelay(num,den,w2); 
plot(w2/pi,GR);grid; 
xlabel('\omega /\pi'); ylabel('Group Delay (sec)'); 
title('Group Delay of a Type 1 Chebyshev Lowpass Filter'); 
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Q7.6  The coefficients of the Type 1 Chebyshev lowpass transfer function for the parameters given in 

Question 7.1 and generated by running modified Program P7_1 are as follows: 
 
Numerator Coefficients are  
    0.0004    0.0020    0.0040    0.0040    0.0020    0.0004 
 
Denominator Coefficients are  
    1.0000   -3.8269    6.2742   -5.4464    2.4915   -0.4797 

 The exact expression for the transfer function is – 

  
1 2 3 4 5

1 2 3 4 5

0.0004 0.0020 0.0040 0.0040 0.0020 0.0004( )
1 3.8269 6.2742 5.4464 2.4915 0.4797

z z z z zH z
z z z z z

− − − − −

− − − − −

+ + + + +
=

− + − + −
 

 

 The gain response of the filter as designed is given below: 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-60

-50

-40

-30

-20

-10

0

ω /π

G
ai

n 
in

 d
B

Gain Response of a Type 1 Chebyshev Lowpass Filter

 

 From the plot we conclude that the design MEETS the specifications. 
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The plot of the unwrapped phase response and the group delay response of this filter is given below: 
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Here is the modified version of Program P7_1 for answering question Q7.7: 
 
% Program Q7_7 
% Design of a Chebyshev Type 2 Highpass Digital Filter 
% meeting the design specification given in Q7.2. 
% - Print out the numerator and denominator coefficients 
%   for the transfer function. 
% - Compute and plot the gain function. 
% - Compute and plot the unwrapped phase response. 
% - Compute and plot the group delay. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Design spec as given in Q7.2. 
FT = 3.50*10^3;      % sampling freq 
Fp = 1.05*10^3;      % analog passband edge freq 
Fs = 0.60*10^3;      % analog stopband edge freq 
Rp = 1.0;            % max passband ripple, dB 
Rs = 50;             % min stopband attenuation, dB 
% Convert spec to normalized digital frequencies 
omega_p = 2*pi*Fp/FT; 
Wp = 2*Fp/FT;         % omega_p/pi 
omega_s = 2*pi*Fs/FT; 
Ws = 2*Fs/FT;         % omega_s/pi 
% Estimate the Filter Order 
[N, Wn] = cheb2ord(Wp, Ws, Rp, Rs);  
% Design the Filter 
[num,den] = cheby2(N,Rs,Wn,'high');  
% Display the transfer function 
disp('Numerator Coefficients are ');disp(num); 
disp('Denominator Coefficients are ');disp(den); 
% Compute the gain response 
[g, w] = gain(num,den);  
% Plot the gain response 
figure(1); 
axis([0 1 -60 5]); 
% Add lines to the plot to help determine if the spec was met. 
hold on; 
tmpY = -60:65/511:5; 
tmpX = ones(1,length(tmpY))*Wp; 
plot(tmpX,tmpY,'r-');    % vertical line at passband edge freq 
tmpX = ones(1,length(tmpY))*Ws; 
plot(tmpX,tmpY,'g-');    % vertical line at stopband edge freq 
tmpY = ones(1,length(w))*(-Rp); 
plot(w/pi,tmpY,'r-');    % horizontal line at Rp 
tmpY = ones(1,length(w))*(-Rs); 
plot(w/pi,tmpY,'g-');    % horizontal line at Rs 
% now plot the gain 
plot(w/pi,g);grid; 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response of a Type 2 Chebyshev Highpass Filter'); 
hold off; 
% Find and plot the phase 
figure(2); 
w2 = 0:pi/511:pi; 
Hz = freqz(num,den,w2); 
Phase = unwrap(angle(Hz)); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response of a Type 2 Chebyshev Highpass Filter'); 
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% Find and plot the group delay 
figure(3); 
GR = grpdelay(num,den,w2); 
plot(w2/pi,GR);grid; 
xlabel('\omega /\pi'); ylabel('Group Delay (sec)'); 
title('Group Delay of a Type 2 Chebyshev Highpass Filter'); 
 

Q7.7  The coefficients of the Type 1 Chebyshev highpass transfer function for the parameters given 

in Question 7.2 and generated by running modified Program P7_1 are as follows: 
 

Numerator Coefficients are  
    0.0671   -0.2404    0.4146   -0.4146    0.2404   -0.0671 

 
Denominator Coefficients are  
    1.0000    0.2933    0.7303    0.0711    0.0783    0.0001 

 The exact expression for the transfer function is – 
1 2 3 4 5

1 2 3 4 5

0.0671 0.2404 0.4146 0.4146 0.2404 0.0671( )
1 0.2933 0.7303 0.0711 0.0783 0.0001

z z z z zH z
z z z z z

− − − − −

− − − − −

− + − + −
=

+ + + + +
 

 The gain response of the filter as designed is given below: 
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 From the plot we conclude that the design MEETS the specifications. 
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The plot of the unwrapped phase response and the group delay response of this filter is given below: 
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Here is the modified version of Program P7_1 for answering question Q7.8: 
 
% Program Q7_8 
% Design of an Elliptic Bandpass Digital Filter 
% meeting the design specification given in Q7.3. 
% - Print out the numerator and denominator coefficients 
%   for the transfer function. 
% - Compute and plot the gain function. 
% - Compute and plot the unwrapped phase response. 
% - Compute and plot the group delay. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Design spec as given in Q7.3. 
FT = 7.00*10^3;      % sampling freq 
Fp1 = 1.4*10^3;      % analog lower passband edge freq 
Fp2 = 2.1*10^3;      % analog upper passband edge freq 
Fs1 = 1.05*10^3;     % analog lower stopband edge freq 
Fs2 = 2.45*10^3;     % analog upper stopband edge freq 
Rp = 0.4;            % max passband ripple, dB 
Rs = 50;             % min stopband attenuation, dB 
% Convert spec to normalized digital frequencies 
omega_p1 = 2*pi*Fp1/FT; 
Wp1 = 2*Fp1/FT;         % omega_p1/pi 
omega_p2 = 2*pi*Fp2/FT; 
Wp2 = 2*Fp2/FT;         % omega_p2/pi 
Wp = [Wp1 Wp2]; 
omega_s1 = 2*pi*Fs1/FT; 
Ws1 = 2*Fs1/FT;         % omega_s1/pi 
omega_s2 = 2*pi*Fs2/FT; 
Ws2 = 2*Fs2/FT;         % omega_s2/pi 
Ws = [Ws1 Ws2]; 
% Estimate the Filter Order 
[N, Wn] = ellipord(Wp, Ws, Rp, Rs);  
% Design the Filter 
[num,den] = ellip(N,Rp,Rs,Wn);  
% Display the transfer function 
disp('Numerator Coefficients are ');disp(num); 
disp('Denominator Coefficients are ');disp(den); 
% Compute the gain response 
[g, w] = gain(num,den);  
% Plot the gain response 
figure(1); 
axis([0 1 -60 5]); 
% Add lines to the plot to help determine if the spec was met. 
hold on; 
tmpY = -60:65/511:5; 
tmpX = ones(1,length(tmpY))*Wp1; 
plot(tmpX,tmpY,'r-');    % vertical line at passband edge freq 
tmpX = ones(1,length(tmpY))*Wp2; 
plot(tmpX,tmpY,'r-');    % vertical line at passband edge freq 
tmpX = ones(1,length(tmpY))*Ws1; 
plot(tmpX,tmpY,'g-');    % vertical line at stopband edge freq 
tmpX = ones(1,length(tmpY))*Ws2; 
plot(tmpX,tmpY,'g-');    % vertical line at stopband edge freq 
tmpY = ones(1,length(w))*(-Rp); 
plot(w/pi,tmpY,'r-');    % horizontal line at Rp 
tmpY = ones(1,length(w))*(-Rs); 
plot(w/pi,tmpY,'g-');    % horizontal line at Rs 
% now plot the gain 
plot(w/pi,g);grid; 
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xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response of an Elliptic Bandpass Filter'); 
hold off; 
% Find and plot the phase 
figure(2); 
w2 = 0:pi/511:pi; 
Hz = freqz(num,den,w2); 
Phase = unwrap(angle(Hz)); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response of an Elliptic Bandpass Filter'); 
% Find and plot the group delay 
figure(3); 
GR = grpdelay(num,den,w2); 
plot(w2/pi,GR);grid; 
xlabel('\omega /\pi'); ylabel('Group Delay (sec)'); 
title('Group Delay of an Elliptic Bandpass Filter'); 

Q7.8  The coefficients of the elliptic bandpass transfer function for the parameters given in Question 

7.3 and generated by running modified Program P7_1 are as follows: 
Numerator Coefficients are  
    0.0116   -0.0000   -0.0046   -0.0000    0.0166   -0.0000   -0.0046   
-0.0000    0.0116 
 
Denominator Coefficients are  
    1.0000   -0.0000    2.8611   -0.0000    3.4205   -0.0000    1.9609   
-0.0000    0.4529 

 The exact expression for the transfer function is – 
2 4 6 8

2 4 6 8

0.0116 0.0046 0.0166 0.0046 0.0116( )
1 2.8611 3.4205 1.9609 0.4529

z z z zH z
z z z z

− − − −

− − − −

− + − +
=

+ + + +
 

 The gain response of the filter as designed is given below: 
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 From the plot we conclude that the design MEETS the specifications. 

 The plot of the unwrapped phase response and the group delay response of this filter is given 

below: 
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7.2 DESIGN OF FIR FILTERS 

Project 7.3 Gibb's Phenomenon 

Answers: 

Q7.9 The MATLAB program generating the impulse response, truncated to 81 samples, of a zero-

phase ideal lowpass filter with a cutoff at ωc = 0.4π and plotting its magnitude response is 

given below:  NOTE: this program does all four lengths. 

 
% Program Q7_9 
% Investigate Gibbs phenomena for a FIR lowpass filter as 
% asked for in Q7.9. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
n = -40:40;   % this gives us a length of 81 
hn_81 = 0.4 * sinc(0.4*n);  % the length-81 impulse response 
omega = 0:pi/1023:pi;       % radian frequency vector 
W = omega/pi;               % Matlab normalized freq vector 
Hz_81 = abs(freqz(hn_81,1,omega)); % 1024 samles of |H(e^jw)| 
figure(1); 
plot(W,Hz_81); grid; 
xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
title('Magnitude Response for Length=81'); 
% Reduce length to 61 and repeat 
hn_61 = hn_81(11:71); 
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Hz_61 = abs(freqz(hn_61,1,omega)); 
figure(2); 
plot(W,Hz_61); grid; 
xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
title('Magnitude Response for Length=61'); 
% Reduce length to 41 and repeat 
hn_41 = hn_61(11:51); 
Hz_41 = abs(freqz(hn_41,1,omega)); 
figure(3); 
plot(W,Hz_41); grid; 
xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
title('Magnitude Response for Length=41'); 
% Reduce length to 21 and repeat 
hn_21 = hn_41(11:31); 
Hz_21 = abs(freqz(hn_21,1,omega)); 
figure(4); 
plot(W,Hz_21); grid; 
xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
title('Magnitude Response for Length=21'); 
 

  

 

 

 

 

The plot of the magnitude response generated by running this program is as shown below: 
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 The program was modified as indicated below to extract the coefficients of a shorter length filter 

using the colon operator:  

The code shown above does this already. 

 The magnitude response plots generated by running the modified program for the following 

lengths, 61, 41, and 21, are given below: 
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 From these plots we observe the oscillatory behavior of the magnitude responses in each case 

due to the Gibb's phenomenon.  The relation between the number of ripples and the length of 

the filter is – The number of ripples decreases in direct proportion to the length. 

 The relation between the heights of the largest ripples and the length of the filter is – the peak 

ripple height is not affected by the length:  it stays the same no matter what the length. 
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 The modified program to generate impulse response coefficients for an even-length filter is 

given below – 
 
% Program Q7_9B 
% Investigate Gibbs phenomena for a FIR lowpass filter as 
% asked for in Q7.9, with an even filter length. 
% The "trick" to make the length even is to offset the array "n" by 0.5 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
n = -39.5:39.5;   % this gives us a length of 80 
hn_80 = 0.4 * sinc(0.4*n);  % the length-80 impulse response 
omega = 0:pi/1023:pi;       % radian frequency vector 
W = omega/pi;               % Matlab normalized freq vector 
Hz_80 = abs(freqz(hn_80,1,omega)); % 1024 samles of |H(e^jw)| 
figure(1); 
plot(W,Hz_80); grid; 
xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
title('Magnitude Response for Length=80'); 
% Reduce length to 60 and repeat 
hn_60 = hn_80(11:70); 
Hz_60 = abs(freqz(hn_60,1,omega)); 
figure(2); 
plot(W,Hz_60); grid; 
xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
title('Magnitude Response for Length=60'); 
% Reduce length to 40 and repeat 
hn_40 = hn_60(11:50); 
Hz_40 = abs(freqz(hn_40,1,omega)); 
figure(3); 
plot(W,Hz_40); grid; 
xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
title('Magnitude Response for Length=40'); 
% Reduce length to 20 and repeat 
hn_20 = hn_40(11:30); 
Hz_20 = abs(freqz(hn_20,1,omega)); 
figure(4); 
plot(W,Hz_20); grid; 
xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
title('Magnitude Response for Length=20'); 
  

 

Q7.10 The MATLAB program generating the impulse response, truncated to 45 samples, of a zero-

phase ideal highpass filter with a cutoff at ωc = 0.4π and plotting its magnitude response is 

given below: 
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% Program Q7_10 
% Investigate Gibbs phenomena for a FIR highpass filter. 
% The desired impulse response is given by Eq. (7.18) in the 
% Lab book. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
n = -22:22;                 % this gives us a length of 45 
hn = -0.4 * sinc(0.4*n); 
hn(23) = 0.6;               % 0.6 = 1 - w_c/pi; see (7.18) 
omega = 0:pi/1023:pi;       % radian frequency vector 
W = omega/pi;               % Matlab normalized freq vector 
Hz = abs(freqz(hn,1,omega)); % 1024 samles of |H(e^jw)| 
figure(1); 
plot(W,Hz); grid; 
xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
title('Magnitude Response for Length=45'); 

    

 

 The plot of the magnitude response generated by running this program is as shown below: 
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 From these plots we observe the oscillatory behavior of the magnitude responses due to the 

Gibb's phenomenon.    
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   The modified program to generate impulse response coefficients for an even-length filter is 

given below - 

 This is a TRICK QUESTION!  The answer is:  you can’t make the length even in this 
case.  Here’s why:  it’s a zero phase FIR filter.  That means it’s also a linear phase FIR 
filter, because zero phase is a special subset of linear phase.  Now, the desired finite 
length impulse response has even symmetry about the midpoint of h[n].  That makes 
this a TYPE-II linear phase FIR filter.  TYPE-II filters CAN’T BE HIGHPASS, 
because they have to have a zero at 1z = − , which is the same as .ω π= ±   See pages 
13-21 of module 7 of the course notes for more details about this. 

Q7.11 The MATLAB program generating the impulse response samples of a zero-phase differentiator 

of length 2M +1 and plotting its magnitude response is given below: 
  
% Program Q7_11 
% Investigate Gibbs phenomena for FIR differentiator 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M = [40 30 20 10];          % vector of filter half-lengths 
omega = 0:pi/1023:pi;       % radian frequency vector 
W = omega/pi;               % Matlab normalized freq vector 
for TRIAL=1:4,              % loop on lengths 
    n = 1:M(TRIAL); 
    b = cos(pi*n)./n; 
    hn = [-fliplr(b) 0 b]; 
    Hz = abs(freqz(hn,1,omega)); % 1024 samles of |H(e^jw)|     
    figure(TRIAL); 
    plot(W,Hz);grid; 
    xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
    title(['Magnitude Response for Length=',int2str(2*M(TRIAL)+1)]); 
end 

 

 The program was run for the following different values of length 81, 61, 41, and 21.  From the 

plots generated we observe the oscillatory behavior of the magnitude responses in each case 

due to the Gibb's phenomenon.   
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   The relation between the number of ripples and the length of the filter is – The number of 

ripples is decreases in direct proportion as the length is decreased. 

 The relation between the heights of the largest ripples and the length of the filter is – The peak 

ripple does not change with length. 

Q7.12 The MATLAB program generating the impulse response samples of a zero-phase Hilbert 

transformer of length 2M +1 and plotting its magnitude response is given below 
 
% Program Q7_12 
% Investigate Gibbs phenomena for FIR Hilbert xformer 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M = [40 30 20 10];          % vector of filter half-lengths 
omega = 0:pi/1023:pi;       % radian frequency vector 
W = omega/pi;               % Matlab normalized freq vector 
for TRIAL=1:4,              % loop on lengths 
    n = 1:M(TRIAL); 
    c = sin(pi*n*0.5); 
    b = 2*(c.*c)./(pi*n); 
    hn = [-fliplr(b) 0 b]; 
    Hz = abs(freqz(hn,1,omega)); % 1024 samles of |H(e^jw)|     
    figure(TRIAL); 
    plot(W,Hz);grid; 
    xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
    title(['Magnitude Response for Length=',int2str(2*M(TRIAL)+1)]); 
end 

 The program was run for the following different values of length 81, 61, 41, and 21.  From the 

plots generated we observe the oscillatory behavior of the magnitude responses in each case 

due to the Gibb's phenomenon.   
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   The relation between the number of ripples and the length of the filter is – The number of 

ripples decreases in direct proportion to the decrease in the length of the impulse 

response. 

 The relation between the heights of the largest ripples and the length of the filter is – The peak 

ripple is not affected by the length. 

Project 7.4 Estimation of FIR Filter Order 

Answers: 

Q7.13 The estimated order of a linear-phase lowpass FIR filter with the following specifications: ωp =  

2 kHz, ωs =  2.5 kHz, δp = 0.005, δs = 0.005, and FT = 10  kHz obtained using kaiord is – 

N = 46.  The correct call is kaiord(2000,2500,0.005,0.005,10000). 

 The purpose of the command ceil is – To round the estimated order up to the next 

largest integer; the order has to be integer, so if the formula returns a fraction it needs 

to be rounded up to the next whole number. 

 The purpose of the command nargin is – To detect if kaiord has been called with four 

arguments or with five.  If five, it’s assumed that all the frequencies are analog and that 

the last argument is the sampling frequency.  If four, then the sampling frequency 

defaults to 2, implying that the other frequency arguments are in units of cycles per 

sample. 

Q7.14 (a) The estimated order of the linear-phase FIR filter with sampling frequency changed to FT = 

20  kHz is – N=91. 

 (b) The estimated order of the linear-phase FIR filter with ripples changed to δp = 0.002 and δs 

= 0.002  is – N=57. 

 (c) The estimated order of the linear-phase FIR filter with stopband edge changed to ωs =  2.3 

kHz is – N=76. 

 From the above results and that obtained in Question Q7.13 we observe that:  
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The relation between the filter order and sampling frequency is as follows - for a given 

analog transition bandwidth, an increase in sampling frequency results in a 

proportional increase in the estimated order, up to rounding up to the next integer.  

This may be seen clearly from (7.7) on p. 110 of the Lab manual.  The analog 

transition bandwidth in Hz is given by |Fp – Fs|.  However, the transition 

bandwidth in the denominator of (7.7) is digital and has units of radians per 

sample.  The relationship between |Fp – Fs| and Δω is given by 
2 Fp Fs FTω πΔ = − . 

Thus, increasing FT by a factor of 2 will decrease Δω by a factor of two, which 

doubles the order estimated in (7.7) up to the rounding to the next larger integer. 

 The relation between the filter order and ripples is as follows -  The estimated order is 

approximately proportional to the log (base 10) of the ripples. 

 The relation between the filter order and the transition band is as follows – To within 

rounding, the order changes in proportion to the transition bandwidth.  Increasing the 

transition bandwidth by a factor of two tends to halve the order.  Similarly, decreasing 

the transition bandwidth by a fact of two tends to double the order.  This may again be 

understood by the appearance of  Δω in the denominator of (7.7). 

Q7.15 The estimated order of a linear-phase lowpass FIR filter with the specifications as given in 

Question Q7.13 and obtained using kaiserord is – N=54.  The correct call is: 

kaiserord([2000 2500],[1 0],[0.005 0.005],10000) 

 Comparing the above value of the order with that obtained in Question Q7.13 we observe – the 

order estimated by kiaserord is lower.  This is because kaiserord uses a different 

approximation for the order.  Specifically, kaiserord uses the approximation given in 

(7.37) on p. 115 of the Lab manual; this approximation is normally associated with a 

windowed FIR design where the window will specifically be a Kaiser window. 
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Q7.16 The estimated order of a linear-phase lowpass FIR filter with the specifications as given in 

Question Q7.13 and obtained using firpmord is – N=47.  The correct call is 

firpmord([2000 2500],[1 0],[0.005 0.005],10000) 

 Comparing the above value of the order with that obtained in Questions Q7.13 and Q7.15 we 

observe -  In this case, firpmord delivers a result that is one larger than kaiord and still 

quite a bit less than kaiserord.  Again, it should be kept in mind that the approximation 

used by kaiord is quite general; it’s intended to be used for any FIR filter design 

technique.  These other formulas used by kaiserord and firpmord are more specialized.  

The approximation used by firpmord is specifically designed to give a good order 

estimate for a design by the Parks-McClellan algorithm. 

Q7.17 The estimated order of a linear-phase bandpass FIR filter with the following specifications: 

passband edges at 1.8 and 3.6 kHz, stopband edges at 1.2 and 4.2 kHz, δp = 0.01, δs = 0.02, 

and FT = 12 kHz, obtained using kaiord is – Here there is yet another discrepancy.  In 

the Lab manual, it states for Q7.17 that δp = 0.1.  If you use that figure, then your call 

looks like this: 

kaiord([1800 3600],[1200 4200],0.1,0.02,12000) 

and you get N=20. 

But here in the Lab report file it says δp = 0.01.  Using instead that figure, your call is 

kaiord([1800 3600],[1200 4200],0.01,0.02,12000) 

and you get N=33.  Since it’s unclear, I’ll take either answer. 

Q7.18 The estimated order of a linear-phase bandpass FIR filter with the specifications as given in 

Question Q7.17 and obtained using kaiserord is – Again there is discrepancy.  If you 

use δp = 0.1, then your call looks like 
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kaiserord([1200 1800 3600 4200],[0 1 0],[0.02 0.1 0.02],12000) 

and you get N=37.  If instead you take δp = 0.01, then your call is 

kaiserord([1200 1800 3600 4200],[0 1 0],[0.02 0.01 0.02],12000) 

and you get N=45.  I’ll accept either answer. 

 Comparing the above value of the order with that obtained in Question Q7.17 we observe – the 

orders estimated by kaiserord are a lot higher, but probably more accurate if you are 

going to do a Kaiser window design. 

Q7.19 The estimated order of a linear-phase bandpass FIR filter with the specifications as given in 

Question Q7.17 and obtained using firpmord is – if you take δp = 0.01, then your call is 

firpmord([1200 1800 3600 4200],[0 1 0],[0.02 0.1 0.02],12000) 

and your answer is N=22.  If instead you take δp = 0.01, then your call is 

firpmord([1200 1800 3600 4200],[0 1 0],[0.02 0.01 0.02],12000) 

and your answer is N=35.  I’ll accept either answer. 

 Comparing the above value of the order with that obtained in Questions Q7.17 and Q7.18 we 

observe – The order estimated by firpmord is again between the other two, which is 

probably accurate for a Parks-McClellan design. 
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Project 7.5 FIR Filter Design 

Answers: 
Q7.20 The MATLAB program to design and plot the gain and phase responses of a linear-phase FIR 

filter using fir1 is shown below.  The filter order is estimated using kaiord.  The output 
data are the filter coefficients. 

% Program Q7_20 
% Design a linear phase Lowpass FIR Digital Filter 
% meeting the design specification given in Q7.13. 
% - Print out the numerator coefficients 
%   for the transfer function. 
% - Compute and plot the gain function. 
% - Compute and plot the phase response. 
% - Compute and plot the unwrapped phase response. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
% Design spec as given in Q7.13. 
Fp =  2*10^3; 
Fs =  2.5*10^3; 
FT = 10*10^3; 
Rp = 0.005; 
Rs = 0.005; 
% Estimate the filter order and print to console 
N = kaiord(Fp,Fs,Rp,Rs,FT) 
% Design the filter; Hamming window by default 
Wp = 2*Fp/FT;    % These freqs are normalized: they go 
Ws = 2*Fs/FT;    %  zero to one, not zero to pi. 
Wn = Wp + (Ws - Wp)/2; 
h = fir1(N,Wn); 
% Show the Numerator Coefficients 
disp('Numerator Coefficients are ');disp(h); 
% Compute and plot the gain response 
[g, w] = gain(h,[1]); % same “gain” fcn as in Lab 4 
figure(1); 
plot(w/pi,g);grid; 
%axis([0 1 -60 5]); 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response'); 
% Compute the frequency response 
w2 = 0:pi/511:pi; 
Hz = freqz(h,[1],w2); 
% TEST: did we meet the spec? 
MagH = abs(Hz); 
T1 = 1.005*ones(1,length(w2)); 
T2 = 0.995*ones(1,length(w2)); 
T3 = 0.005*ones(1,length(w2)); 
figure(4); 
plot(w2/pi,MagH,w2/pi,T1,w2/pi,T2,w2/pi,T3);grid; 
% Find and plot the phase 
figure(2); 
Phase = angle(Hz); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Phase (rad)'); 
title('Phase Response'); 
figure(3); 
UPhase = unwrap(Phase); 
plot(w2/pi,UPhase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response'); 
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 The coefficients of the lowpass filter corresponding to the specifications given in Question 7.20 

are as shown below – 
      
    0.0010   -0.0004   -0.0015    0.0000    0.0024    0.0010   -0.0038   -0.0032    0.0049 
   
    0.0071   -0.0050   -0.0128    0.0026    0.0202    0.0038   -0.0284   -0.0166    0.0366 
 
    0.0404   -0.0436   -0.0909    0.0483    0.3129    0.4498    0.3129    0.0483   -0.0909 
   
   -0.0436    0.0404    0.0366   -0.0166   -0.0284    0.0038    0.0202    0.0026   -0.0128 
   
   -0.0050    0.0071    0.0049   -0.0032   -0.0038    0.0010    0.0024    0.0000   -0.0015 
 
   -0.0004    0.0010 

 The generated gain and phase responses are given below: 
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 From the gain plot we observe that the filter as designed DOES NOT meet the specifications. 

AS SHOWN in the two detail plots above, with N=46, neither the passband spec at wp 

= 0.4 (normalized frequency) nor the stopband spec at ws = 0.5 (normalized frequency) 

are met.  So this design DOES NOT meet the spec. 

 The filter order that meets the specifications is –  N=66 

For the filter that DOES MEET THE SPEC, here are the plots: 
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Q7.21 The MATLAB program of Question Q7.20 was modified as indicated below for using different 

windows other than default Hamming window. 
% Program Q7_21 
% Design a linear phase Lowpass FIR Digital Filter 
% meeting the design specification given in Q7.13. Use other 
%     than Hamming window. 
% - Print out the numerator coefficients 
%   for the transfer function. 
% - Compute and plot the gain function. 
% - Compute and plot the phase response. 
% - Compute and plot the unwrapped phase response. 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
% Design spec as given in Q7.13. 
Fp =  2*10^3; 
Fs =  2.5*10^3; 
FT = 10*10^3; 
Rp = 0.005; 
Rs = 0.005; 
% Estimate the filter order and print to console 
N = kaiord(Fp,Fs,Rp,Rs,FT); 
N = N+13 
% Design the filter 
Wp = 2*Fp/FT;    % These freqs are normalized: they go 
Ws = 2*Fs/FT;    %  zero to one, not zero to pi. 
Wn = Wp + (Ws - Wp)/2; 
%h = fir1(N,Wn);      % Default Hamming window 
%Wdw = hann(N+3);Wdw=Wdw(2:N+2); % Hann; see footnote on p. 563 of text. 
%Wdw = blackman(N+3);Wdw=Wdw(2:N+2); % Blackman; see text p. 563. 
%%%%%%%%%%%%%%%% Dolph-Chebyshev Section %%%%%%%%%%%%%%%%%%%%%%%%%%% 
Wdw = chebwin(N+1,38); 
figure(5); 
plot([0:1/511:1],abs(freqz(Wdw,[1],0:pi/511:pi)));grid; % plot window 
xlabel('\omega /\pi');ylabel('|Window|');title('Window'); 
%%%%%% end Dolph Cheby window %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
h = fir1(N,Wn,Wdw); 
% Show the Numerator Coefficients 
disp('Numerator Coefficients are ');disp(h); 
% Compute and plot the gain response 
[g, w] = gain(h,[1]);  
figure(1); 
plot(w/pi,g);grid; 
%axis([0 1 -60 5]); 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response'); 
% Compute the frequency response 
w2 = 0:pi/511:pi; 
Hz = freqz(h,[1],w2); 
% TEST: did we meet the spec? 
MagH = abs(Hz); 
T1 = 1.005*ones(1,length(w2)); 
T2 = 0.995*ones(1,length(w2)); 
T3 = 0.005*ones(1,length(w2)); 
figure(4); 
plot(w2/pi,MagH,w2/pi,T1,w2/pi,T2,w2/pi,T3);grid; 
% Find and plot the phase 
figure(2); 
Phase = angle(Hz); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Phase (rad)'); 
title('Phase Response'); 
figure(3); 
UPhase = unwrap(Phase); 
plot(w2/pi,UPhase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response'); 
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(a) Use of Hanning window – The generated gain and phase responses are given below: 
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   From the gain plot we observe that the filter as designed _DOES NOT_ meet the 

specifications.  AS SHOWN in the two detail plots above, with N=46, neither the 

passband spec at wp = 0.4 (normalized frequency) nor the stopband spec at ws = 0.5 

(normalized frequency) are met.  So this design DOES NOT meet the spec. 

 The filter order that meets the specifications is – ANOTHER TRICK QUESTION!!  The 

Hann window CANNOT MEET THIS SPEC.  Here’s why.  The minimum stopband 
attenuation is given by 20log 46.0206s pα δ= − = dB.  However, if you look in Table 

10.2 on page 535 of the text, you will see that the Hann window is capable of providing 

a stopband attenuation of only 43.9 dB…. e.g., not enough! 
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(b) Use of Blackman window – The generated gain and phase responses are given below: 
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From the gain plot we observe that the filter as designed DOES NOT meet the specifications. 

AS SHOWN in the two detail plots above, with N=46, neither the passband spec at wp = 

0.4 (normalized frequency) nor the stopband spec at ws = 0.5 (normalized frequency) are 

met.  So this design DOES NOT meet the spec. 

 The filter order that meets the specifications is –  N=86 

For the filter that DOES MEET THE SPEC, here are the plots: 
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 (c) Use of Dolph-Chebyshev window – The generated gain and phase responses are given 

below: 
 

I have empirically adjusted the “chebwin” sidelobe attenuation parameter R until 

the passband and stopband ripple just meet the spec.  This resulted in R = 38 dB.  
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With this value R, I then call chebwin and run the program with the order N=46 

designed by kaiord. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80

-70

-60

-50

-40

-30

-20

-10

0

10

ω /π

G
ai

n 
in

 d
B

Gain Response

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-3

-2

-1

0

1

2

3

4

ω /π

P
ha

se
 (r

ad
)

Phase Response

 



51 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

ω /π

U
nw

ra
pp

ed
 P

ha
se

 (r
ad

)

Unwrapped Phase Response

 

0.35 0.36 0.37 0.38 0.39 0.4
0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

 



52 

0.48 0.49 0.5 0.51 0.52 0.53
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

 

  

The parameters  γ and β used in the design are – We have 20log 38γ− = , which implies 

that 38 20 310 12.59 10γ − −= = × .  Thus, we have also from (7.32) on p. 115 of the Lab 

manual with 2M=46:   1.00608.β =  

From the gain plot we observe that the filter as designed DOES NOT meet the 

specifications. AS SHOWN in the two detail plots above, with N=46, neither the 

passband spec at wp = 0.4 (normalized frequency) nor the stopband spec at ws = 

0.5 (normalized frequency) are met.  So this design DOES NOT meet the spec. 

 The filter order that meets the specifications is –  N=61. 

For the filter that DOES MEET THE SPEC, here are the plots: 
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Q7.22 The MATLAB program to design and plot the gain and phase responses of a linear-phase FIR 

filter using firpm is shown below.  The filter order is estimated using kaiord.  The output 

data are the filter coefficients. 
 
% Program Q7_22 
% Use Parks-McClellan to design a linear phase Lowpass  
% FIR Digital Filter meeting the design specification given  
% in Q7.13. 
% - Print out the numerator coefficients 
%   for the transfer function. 
% - Compute and plot the gain function. 
% - Compute and plot the phase response. 
% - Compute and plot the unwrapped phase response. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
% Design spec as given in Q7.13. 
Fp =  2*10^3; 
Fs =  2.5*10^3; 
FT = 10*10^3; 
Rp = 0.005; 
Rs = 0.005; 
% Estimate the filter order and print to console 
N = kaiord(Fp,Fs,Rp,Rs,FT) 
% Design the filter using Parks-McClellan 
Wp = 2*Fp/FT;    % These freqs are normalized: they go 
Ws = 2*Fs/FT;    %  zero to one, not zero to pi. 
F = [0 Wp Ws 1]; 
A = [1 1 0 0]; 
h = firpm(N,F,A); 
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% Show the Numerator Coefficients 
disp('Numerator Coefficients are ');disp(h); 
% Compute and plot the gain response 
[g, w] = gain(h,[1]);  
figure(1); 
plot(w/pi,g);grid; 
%axis([0 1 -60 5]); 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response'); 
% Compute the frequency response 
w2 = 0:pi/511:pi; 
Hz = freqz(h,[1],w2); 
% TEST: did we meet the spec? 
MagH = abs(Hz); 
T1 = 1.005*ones(1,length(w2)); 
T2 = 0.995*ones(1,length(w2)); 
T3 = 0.005*ones(1,length(w2)); 
figure(4); 
plot(w2/pi,MagH,w2/pi,T1,w2/pi,T2,w2/pi,T3);grid; 
% Find and plot the phase 
figure(2); 
Phase = angle(Hz); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Phase (rad)'); 
title('Phase Response'); 
figure(3); 
UPhase = unwrap(Phase); 
plot(w2/pi,UPhase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response'); 

 

 The coefficients of the lowpass filter corresponding to the specifications given in Question 7.20 

are as shown below – 
 
    0.0028   -0.0022   -0.0046   -0.0006    0.0053    0.0019   -0.0073   -0.0058    0.0079 
   
    0.0106   -0.0069   -0.0170    0.0032    0.0243    0.0045   -0.0319   -0.0182    0.0390 
   
    0.0422   -0.0448   -0.0924    0.0486    0.3136    0.4501    0.3136    0.0486   -0.0924 
   
   -0.0448    0.0422    0.0390   -0.0182   -0.0319    0.0045    0.0243    0.0032   -0.0170 
   
   -0.0069    0.0106    0.0079   -0.0058   -0.0073    0.0019    0.0053   -0.0006   -0.0046 
 
   -0.0022    0.0028 

 The generated gain and phase responses are given below: 
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 From the gain plot we observe that the filter as designed DOES NOT meet the specifications. 

 The filter order that meets the specifications is -  N=47. 

For the filter with N=47 that DID MEET THE SPEC, the plots are shown below: 
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Q7.23 The MATLAB program to design and plot the gain and phase responses of a linear-phase FIR 

filter using fir1 and kaiser is shown below.  The filter order N is estimated using Eq. 

(7.37) and the parameter β is computed using Eq. (7.36). The output data are the filter 

coefficients. 
 
% Program Q7_23 
% Use Kaiser window to design a linear phase Lowpass  
% FIR Digital Filter meeting the design specification given  
% in Q7.23. 
% 
% It is clear from the statement of the question that Mitra 
% wants us to use (7.36) and (7.37) for this problem.  That 
% isn't the greatest thing to try because kaiserord already does 
% exactly what we need.... but that's Q7_24!  So here goes! 
% - Print out the numerator coefficients 
%   for the transfer function. 
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% - Compute and plot the gain function. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
% Design spec as given in Q7.23. 
Wp = 0.31; 
Ws = 0.41; 
Wn = Wp + (Ws-Wp)/2; 
As = 50; 
Ds = 10^(-As/20); 
Dp = Ds;            %Kaiser window design has equal ripple in 
                    % passband and stopband. 
% estimate order using (7.37) 
if As > 21 
    N = ceil((As-7.95)*2/(14.36*(abs(Wp-Ws)))+1) 
else 
    N = ceil(0.9222*2/abs(Wp-Ws)+1) 
end 
% Use (7.36) to get Beta 
if As > 50 
    BTA = 0.1102*(As-8.7); 
elseif As >= 21 
    BTA = 0.5842*(As-21)^0.4+0.07886*(As-21); 
else 
    BTA = 0; 
end 
Win = kaiser(N+1,BTA); 
h = fir1(N,Wn,Win); 
% Show the Numerator Coefficients 
disp('Numerator Coefficients are ');disp(h); 
% Compute and plot the gain response 
[g, w] = gain(h,[1]);  
figure(1); 
plot(w/pi,g);grid; 
axis([0 1 -80 5]); 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response'); 
% Compute the frequency response 
w2 = 0:pi/511:pi; 
Hz = freqz(h,[1],w2); 
% Find and plot the phase 
figure(2); 
Phase = angle(Hz); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Phase (rad)'); 
title('Phase Response'); 
figure(3); 
UPhase = unwrap(Phase); 
plot(w2/pi,UPhase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response'); 
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 The coefficients of the lowpass filter corresponding to the specifications given in Question 7.23 

are as shown below – 
   
  0.0003     0.0008     0.0003   -0.0011   -0.0017    0.0000    0.0026    0.0027   -0.0010   -0.0049   

 -0.0035     0.0033     0.0080    0.0034   -0.0074   -0.0119   -0.0018    0.0140    0.0161   -0.0027   

 -0.0241    -0.0201    0.0127    0.0406    0.0236   -0.0354   -0.0754   -0.0258     0.1214    0.2871                 

   0.3597    0.2871     0.1214   -0.0258   -0.0754  -0.0354    0.0236     0.0406     0.0127   -0.0201    

  -0.0241   -0.0027    0.0161    0.0140   -0.0018   -0.0119   -0.0074    0.0034      0.0080    0.0033    

  -0.0035   -0.0049   -0.0010    0.0027    0.0026    0.0000   -0.0017   -0.0011      0.0003    0.0008           

    0.0003 

    

The generated gain and phase responses are given below: 
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 From the gain plot we observe that the filter as designed DOES meet the specifications. 

 The filter order that meets the specifications is -     N=60. 
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Q7.24 The MATLAB program to design and plot the gain and phase responses of a linear-phase FIR 

filter using fir1 and kaiser is shown below.  The filter order N and the parameter β are 

evaluated using kaiserord. The output data are the filter coefficients. 
 
 
 The coefficients of the lowpass filter corresponding to % Program Q7_24 
% Use Kaiser window to design a linear phase Lowpass  
% FIR Digital Filter meeting the design specification given  
% in Q7.23.  Use kaiserord and fir1. 
% - Print out the numerator coefficients 
%   for the transfer function. 
% - Compute and plot the gain function. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
% Design spec as given in Q7.23. 
Wp = 0.31; 
Ws = 0.41; 
As = 50; 
Ds = 10^(-As/20); 
% Design the Filter 
F = [Wp Ws]; 
A = [1 0]; 
DEV = [Ds Ds]; 
[N,Wn,BTA,Ftype] = kaiserord(F,A,DEV); 
Win = kaiser(N+1,BTA); 
h = fir1(N,Wn,Ftype,Win); 
% Show the Numerator Coefficients 
disp('Numerator Coefficients are ');disp(h); 
% Compute and plot the gain response 
[g, w] = gain(h,[1]);  
figure(1); 
plot(w/pi,g);grid; 
axis([0 1 -80 5]); 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response'); 
% Compute the frequency response 
w2 = 0:pi/511:pi; 
Hz = freqz(h,[1],w2); 
% Find and plot the phase 
figure(2); 
Phase = angle(Hz); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Phase (rad)'); 
title('Phase Response'); 
figure(3); 
UPhase = unwrap(Phase); 
plot(w2/pi,UPhase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response'); 

 the specifications given in Question 7.23 are as shown below – 

Wp = 0.31; Ws = 0.41; As = 50 dB. 
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The generated gain and phase responses are given below: 
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 From the gain plot we observe that the filter as designed DOES meet the specifications. 

 The filter order that meets the specifications is – N=59. 

Q7.25 The MATLAB program to design and plot the magnitude response of a linear-phase multiband 

FIR filter using fir2 is shown below: 
 
% Program Q7_25 
% Use fir2 to design a linear phase Lowpass  
% FIR Digital Filter meeting the design specification given  
% in Q7.23. 
% - Compute and plot the gain function. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
% Design spec as given in Q7.25. 
N = 95; 
A = [0.4 0.4  1.0 1.0  0.8 0.8]; 
F = [0   0.25 0.3 0.45 0.5 1.0]; 
% Design the Filter 
h = fir2(N,F,A); 
% Compute and plot the gain response 
[g, w] = gain(h,[1]);  
figure(1); 
plot(w/pi,g);grid; 
%axis([0 1 -80 5]); 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response'); 
% Compute the frequency response 
w2 = 0:pi/511:pi; 
Hz = freqz(h,[1],w2); 
% Plot 
figure(2); 
plot(w2/pi,abs(Hz));grid; 
xlabel('\omega /\pi'); ylabel('|H(e^{j\omega})|'); 
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title('|H(e^{j\omega})|'); 
% Find and plot the phase 
figure(3); 
Phase = angle(Hz); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Phase (rad)'); 
title('Phase Response'); 
figure(4); 
UPhase = unwrap(Phase); 
plot(w2/pi,UPhase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response'); 

 

 The magnitude response of the filter designed for the specifications given in Question Q7.25 is 

shown below: 
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 From the magnitude response plot we observe that the filter as designed DOES NOT meet 

the specifications. 

Q7.26 The MATLAB program to design and plot the gain response of a linear-phase bandpass FIR 

filter using firpm and kaiserord is shown below: 

 Again there is ambiguity depending on weather \delta_p is supposed to be 0.1 or 0.01.  
If you make it 0.01 you get this: 

 
% Program Q7_26 
% Use kaiserord and firpm to design the linear phase bandpass  
% FIR Digital Filter specified in Q7.17. 
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% - Print out the numerator coefficients 
%   for the transfer function. 
% - Compute and plot the gain function. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
% Design spec as given in Q7.17. 
F = [1200 1800 3600 4200]; 
A = [0 1 0]; 
DEV = [0.02 0.1 0.02]; 
Fs = 12000; 
Dp = 0.1; 
Ds = 0.02; 
[N,Wn,BTA,FILTYPE] = kaiserord(F,A,DEV,Fs); 
N 
% firpm setup 
F2 = 2*[0 1200 1800 3600 4200 6000]/Fs; 
A2 = [0 0 1 1 0 0]; 
wgts = max(Dp,Ds)*[1/Ds 1/Dp 1/Ds]; 
h = firpm(N,F2,A2,wgts); 
% Show the Numerator Coefficients 
disp('Numerator Coefficients are ');disp(h); 
% Compute and plot the gain response 
[g, w] = gain(h,[1]);  
figure(1); 
plot(w/pi,g);grid; 
axis([0 1 -80 5]); 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response'); 
% Compute the frequency response 
w2 = 0:pi/511:pi; 
Hz = freqz(h,[1],w2); 
% Find and plot the phase 
figure(2); 
Phase = angle(Hz); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Phase (rad)'); 
title('Phase Response'); 
figure(3); 
UPhase = unwrap(Phase); 
plot(w2/pi,UPhase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response'); 
 

 The gain response of the filter designed for the specifications given in Question Q7.17 is shown 

below: 
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 From the gain response plot we observe that the filter as designed DOES meet the 

specifications. 

  The filter order that meets the specifications is – N=37, 

 

TAKING \delta_p = 0.01 instead, you get this: 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80

-70

-60

-50

-40

-30

-20

-10

0

ω /π

G
ai

n 
in

 d
B

Gain Response

 



73 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-25

-20

-15

-10

-5

0

5

ω /π

U
nw

ra
pp

ed
 P

ha
se

 (r
ad

)

Unwrapped Phase Response

 

If you examine this one closely, it does not quite meet the spec at the passband edge 

frequencies.  The order is N=37. 

 

Increasing the order slightly to N=39, we obtain the following filter which does meet the 

spec: 
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Q7.27 Using the MATLAB program developed in Question Q7.26 the linear-phase FIR bandpass filter 

for the specifications of Question Q7.27 is designed. 
 
Here’s the new code: 
% Program Q7_27 
% Use kaiserord and firpm to design the linear phase bandpass  
% FIR Digital Filter specified in Q7.27. 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear; 
% Design spec as given in Q7.27. 
Fs1 = 1500; 
Fp1 = 1800; 
Fp2 = 3000; 
Fs2 = 4200; 
Fs = 12000; 
Dp = 0.1; 
Ds = 0.02; 
F = [Fs1 Fp1 Fp2 Fs2]; 
A = [0 1 0]; 
DEV = [Ds Dp Ds]; 
[N,Wn,BTA,FILTYPE] = kaiserord(F,A,DEV,Fs); 
% firpm setup 
ws1 = 2*Fs1/Fs; 
wp1 = 2*Fp1/Fs; 
wp2 = 2*Fp2/Fs; 
ws2 = 2*Fs2/Fs; 
F2 = [0 ws1 wp1 wp2 ws2 1]; 
A2 = [0 0 1 1 0 0]; 
wgts = max(Dp,Ds)*[1/Ds 1/Dp 1/Ds]; 
h = firpm(N,F2,A2,wgts); 
% Show the Numerator Coefficients 
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disp('Numerator Coefficients are ');disp(h); 
% Compute and plot the gain response 
[g, w] = gain(h,[1]);  
figure(1); 
plot(w/pi,g);grid; 
axis([0 1 -80 5]); 
xlabel('\omega /\pi'); ylabel('Gain in dB'); 
title('Gain Response'); 
% Compute the frequency response 
w2 = 0:pi/511:pi; 
Hz = freqz(h,[1],w2); 
% Find and plot the phase 
figure(2); 
Phase = angle(Hz); 
plot(w2/pi,Phase);grid; 
xlabel('\omega /\pi'); ylabel('Phase (rad)'); 
title('Phase Response'); 
figure(3); 
UPhase = unwrap(Phase); 
plot(w2/pi,UPhase);grid; 
xlabel('\omega /\pi'); ylabel('Unwrapped Phase (rad)'); 
title('Unwrapped Phase Response'); 
figure(4); 
% Add lines to the plot to help determine if the spec was met. 
hold on; 
tmpY = 0:1.4/4:1.4; 
tmpX = ones(1,length(tmpY))*wp1; 
plot(tmpX,tmpY,'r-');    % vertical line at passband edge freq 
tmpX = ones(1,length(tmpY))*wp2; 
plot(tmpX,tmpY,'r-');    % vertical line at passband edge freq 
tmpX = ones(1,length(tmpY))*ws1; 
plot(tmpX,tmpY,'g-');    % vertical line at stopband edge freq 
tmpX = ones(1,length(tmpY))*ws2; 
plot(tmpX,tmpY,'g-');    % vertical line at stopband edge freq 
tmpY = ones(1,length(w))*(Dp); 
plot(w/pi,tmpY,'r-');    % horizontal line at Dp 
tmpY = ones(1,length(w))*(Ds); 
plot(w/pi,tmpY,'g-');    % horizontal line at Ds 
% now plot the Frequency Response 
plot(w2/pi,abs(Hz));grid; 
hold off; 
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The gain response of the filter is shown below: 
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 From the gain response plot we observe that the filter as designed DOES NOT meet the 

specifications: THE PASSBAND RIPPLE IS EXCEEDED IN THE UPPER 

TRANSITION BAND.  The filter is optimal in the minimax sense, as are all Parks-

McClellan designs.  The reason this occurred is because: 1) the transition bands are 

don’t care regions for firpm, 2) erratic behavior of this type in the transition bands is 

often observed if the transition bandwidths are not equal.  The usual solution is to make 

all transition bands have the width of the smallest transition band; e.g. to overdesign the 

other transition bands in order to make firpm “play nice.” 

 The filter order that meets the specifications is – N = 73 (as delivered by kaiserord). 

 The new specifications for smooth roll-off in the transition bands are – 
Fs1 = 1500; 
Fp1 = 1800; 
Fp2 = 3000; 
Fs2 = 3300; 
Fs = 12000; 

 

 

 



77 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80

-70

-60

-50

-40

-30

-20

-10

0

ω /π

G
ai

n 
in

 d
B

Gain Response

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-35

-30

-25

-20

-15

-10

-5

0

5

ω /π

U
nw

ra
pp

ed
 P

ha
se

 (r
ad

)

Unwrapped Phase Response

 



78 

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
-0.1

-0.05

0

0.05

0.1

 

0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

 



79 

0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

 

0.52 0.53 0.54 0.55 0.56 0.57 0.58
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

 

Date: 4 December 2007    Signature: Havlicek 


