8.5 WAVELET-BASED IMAGE CODING

e We begin with 1D wavelets.

e Recall the Fourier Transform:

» Our signal x(t) comes from a vector space of allowable

signals.

» The set of signals e/« (for all real w) is a basis for the

vector space.

» The objective is to write x(t) as an (uncountable) linear
combination of the basis signals.

» To find the “Fourier coefficients” in this linear combi-
nation, we take dot products between our signal z(t)
and the basis signals:

0 .
X(w) = / o(t)e=i“td,
e Usually with wavelets, the signals x(t) we are interested
in come from a space called L?(R); it is the space of all

square-integrable signals.

e For suitable “mother wavelet” signals (%), a basis for this
space can be generated by dilating and translating ¥ (t).
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The signal ¥ (t — u) is a shifted version of ¢(t). It is called
a TRANSLATE of 1 (t).

The signal 1,(t) = \/ay(ax) is a stretched version of
Y (t); it is called a DILATE of (t).

The signal ¢, (t — %) = y/ay(ax — u) has BOTH dilation
and translation.

A suitably constructed set of translates and dilates of a
suitable mother wavelet will form a basis for L?(R).

Then, we can write a signal z(t) from L?*(R) as a linear
combination of the wavelets in the basis.

To find the coefficients in the linear combination, we take
dot products between z(t) and the wavelets:

Wz(a,a tu) = /OO ()t —a™tu)dt.

— 0

The set of coefficients Wxz(a,a 1u) is called the
WAVELET TRANSFORM of z(#).
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e For the wavelet transform to be invertible, it is required

that - .
/ T Y < o,

oo w
where U(w) is the Fourier transform of ().
» This implies that ¥(0) = 0 and that, as w — 0,
| W (w)|? — 0 faster than 1/w — oo.
» In other words, ) (t) is like the impulse response of a

high-pass filter (it oscillates).

o If y(t) is a good mother wavelet, then it is only nonzero
on a set that is closed and bounded (a “compact set”).

» This means that (%) is localized in time.

e Thus, a LARGE coefficient in the wavelet transform tells
us that there is a great deal of similarity between z(¢) and
a certain dilated, translated wavelet.

» This tells us that a certain oscillation was present in
x(t), and it also tells us WHEN that oscillation was

present.

e NOTE: the Fourier Transform NEVER tells you anything
about WHEN a certain frequency was present.
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The Scaling Function

e Associated with the mother wavelet (%), there is a
SCALING FUNCTION ¢(t).

» Actually, in rigorous mathematical theory, you start
with ¢(t) and derive ¥ (t) from it.

e Whereas the wavelet v (t) would be the impulse response

of a HIGH PASS filter, the scaling function ¢(¢) would be
the impulse response of a LOW PASS filter.

e Example: Haar wavelet (also, the simplest Daubechies
wavelet).

» Scaling function ¢(t):

Y

» Wavelet 9 (t):

Y
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e The scaling function satisfies a “two-scale dilation equa-

Zh (2t + k),

where h(k), 0 < k < M — 1, is the length-M unit pulse
response of a low-pass digital filter.

tion” :

» This says that the scaling function at one scale can be
written as a linear combination of the TRANSLATES
of the scaling function at the next higher scale.

e The mother wavelet (%) also satisfies a similar equation:
=2 Z g(k)p(2t —

where g(k) = (—1)*h(M —k —1),0 < k < M — 1, is the
length-M unit pulse response of a high-pass digital filter.

e The filters H and G with unit pulse responses h(k)

and g(k) have a special relationship. They are called
QUADRATURE MIRROR FILTERS.

o Let ¢y (t) = 27¢(27t) be a dilation of ¢(t) at the scale 27.

PAGE 8.46



If ¢(¢) is a “good” scaling function, then the set of

translates {2_%q52j (t — 2‘jk)} is an orthonormal
keZ

basis for a signal SUBSPACE V5;.

Loosely, you might think of V5, as the space of all signals
in L?(IR) that can be exactly represented with 27 samples

per unit in time.

Then V5;-1 is the space of all signals that can be repre-
sented with half as many samples.

Clearly, if z(t) € Vyi-1, then z(t) € Vy;, so Vaj-1 C Vs,

A signal x(t) in V,; can be placed into one of two
categories:

» It might vary slowly enough to be in V5;-1,
» or it might not lie in V5;-1.

The signals z(t) € V5; that are not in V5,1 form a signal
subspace called Oq;-1.

Thus, every signal in V5; is either in V5;-1 or in Ogj-1:

ng — ng—1 b Ogj—1.
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e This is like a subband decomposition. A signal x(t) € V5,
can be decomposed into a part that lies in V5;-1 and a
part that lies in O,;-1. The latter is called the “detail
signal”.

o FACT: the set of translates {2_%1&23- (t — 2_jk)}k . of
c

1)(t) at scale 27 form an orthonormal basis for the subspace
Os; .

e For a signal x(t) € Va;+1, this gives us a way to perform a
subband decomposition of z(t).

» We break it into a low-pass part that lies in V5; by taking

dot products with the basis {2_%%3’ (t — 2‘jk)}k "
€

» and a high-pass part that lies in O,; by taking dot

products with the basis {2_%¢2j (t — 2_jk)}k .
=

e FACT: for all integer values of j, the subspaces O,; are all
disjoint. Their union is exactly L?(R).

e Thus, any signal z(¢) in L?(R) can be represented in terms
of its projections into all the detail spaces O,;.

e Together, the set of wavelet basis functions for all the
spaces O,; are an orthonormal basis for L?(R).
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e The dot product of a signal with all of these wavelets is
the DYADIC WAVELET TRANSFORM.

e Pictorially,

*(R)
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Mallat Algorithm

e FACT: if z(t) € V5 and the coefficients of x(¢) with

respect to the basis {2_%¢2j (t — 2_jk)}k are known,
/

then

» The coefficients of the projection of z(t) into V51
can be found by filtering the coefficients in V5; with
a low-pass filter h(k) = h(M — k — 1) and dropping
every other sample from the result (downsampling).

» The coefficients of the projection of x(t) into Og;-1
can be found by filtering the coefficients in V5; with
a high-pass filter g(k) = g(M — k — 1) and dropping
every other sample from the result (downsampling).

e FACT: the coefficients of z(t) in V5; can be recovered
from the coefficients in V5;-1 and in Ogj-1:

1. Insert zeros between each coefficient in V5;-1 and each
coefficient in Oy;-1 (upsample).

2. Filter the upsampled coefficients from V5;-1 with the
filter h(k) and filter the coefficients from O4;-1 with
g(k). Add the resulting sequences. This gives the
coefficients of z(t) in V5;.
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How 1t Works

e To apply the algorithm, begin with a discrete signal y(k).

e For some signal z(t) in Vy;, ASSUME that the signal y(k)
contains the coefficients of x(t) in V5, with respect to the

basis {2_%97523- (t — 2_jk)}k€Z.

e Repeatedly apply the filters i (k) and §(k) and downsample
each result to project x(t) down some number of scales.

e If we apply the filters three times, this gives us a subband
decomposition of our discrete signal y(k) as the wavelet
coefficients of z(t) in Ogj-1, Ogi-2, and Oy;-3 plus the
scaling function coefficients in V5;-3.

» Because of the downsampling at each stage, the
number of samples in this representation is the same
as the number of samples in the original signal y(k).

e The original signal y(k) can be recovered from the
representation by repeatedly upsampling, applying the
filters h(k) and g(k), and adding the results.
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What is it Good For?

e Often, many of the wavelet coefficients will be negligibly

small or zero.

e Then, if the wavelet coefficients are quantized and coded
(by entropy coding, for example), we can COMPRESS our
original discrete signal y(k).

» If there is no quantization, then this gives a lossless
code.

e The original signal can be recovered (approximately) from
the quantized and entropy coded representation.

Example: Haar Wavelet

o h(k) = {% %} (M =2).
o) =155 Ja)

e h(0)=h(2—0—1)=h(1).
e h(1)=h(2—1—1) = h(0).
e g(0)=9(2-0-1)=g(1).
¢ g(1) =g(2—-1-1)=g(0)
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Doing it in 2D

We will consider the SEPARABLE case only.

Suppose that ¢(t) is a 1D scaling function and ) (t) is the
associated 1D mother wavelet.

We define the 2D scaling function by
d(z,y) = ¢(x)9(y)-

THREE 2D wavelets are associated with this scaling

function:
10(z,y) = é(x)v(y)
2(z,y) = Y(z)o(y)
st(z,y) = P(x)Y(y)

2D dilation is defined by applying the SAME scaling factor
to the x and y coordinates.

2D translation is defined by applying INDEPENDENT
translations to the x and y coordinates.
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2D Mallat Algorithm

e Begin with an N x N image I(¢,75), and assume that it
represents scaling function coefficients (dot products with
d(x,y)) for some function J(z,y) € L?(R?).

e Apply the filters h(k) and §(k) to the rows of I(4,5) and
discard every other sample (horizontal downsampling).
This gives two horizontally downsampled images.

e Apply E(k) and g(k) to the columns of each horizontally
downsampled images. This gives four result images.
discard every other sample from each column of these four
images (vertical downsampling).

N N

e The result is four 5 x 5 images; we will call them LL,

LH, HL, and HH.

e Repeat by applying the procedure to LL.
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e Pictorially,

LL

HL

LH

HH

1(1.))
LL | HL
LH | HH

LL

HL

LH

HH
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