ECE 5273/CS 5273 Test 1 Wednesday, March 13, 2002 5:00 PM - 6:15 PM | ring 2002 | Name: JOLA (10) | |-------------|--| | r. Havlicek | Student Num: | | | This is an open notes, open book test. You have 75 minutes to complete the must be your own. | | | SHOW ALL OF YOUR WORK for maximum partial credit! | | | GOOD LUCK! | | SCORE: | | | 1. (25) | | | 2. (18) | | | 3. (20) | | | 4. (20) | | | 5. (17) | | | (a) 2 pts. Any image I can be exactly reconstructed from its DFT I. (b) 2 pts. Any image I can be exactly reconstructed from its histogram H_I(k). (c) 2 pts. Any continuous focal plane image I_C can always be exactly reconstructed from the sampled digital image I. (d) 2 pts. The 3-D real-world scene I(X, Y, Z) can be exactly reconstructed from the digital image II, provided that the horizontal and vertical spatial pixel sampling rates are greater than the Nyquist rates. (e) 2 pts. Binary erosion is the inverse operation of binary dilation. That is, any binary image I can be exactly reconstructed by applying an appropriate erosion to the binary image I = DILATE(I, B). (f) 2 pts. Medical CAT scans are an example of reflection imaging. (g) 2 pts. For viewing the DFT of an image I with real-valued pixels, it is usually most useful to display the logarithm of the DFT phase. (h) 2 pts. If I is an image that is real and even symmetric, then the DFT I is also real and even symmetric. (i) 2 pts. Thresholding is usually an effective technique for separating the object and background in any image I, provided that the histgram H_I(k) is multi-modal. An sure Shall be Provided (Chimodal Prov | | |--|------------| | (c) 2 pts. Any continuous focal plane image \$\mathbb{I}_C\$ can always be exactly reconstructed from the sampled digital image \$\mathbb{I}\$. (d) 2 pts. The 3-D real-world scene \$I(X,Y,Z)\$ can be exactly reconstructed from the digital image \$\mathbb{I}\$, provided that the horizontal and vertical spatial pixel sampling rates are greater than the Nyquist rates. (e) 2 pts. Binary erosion is the inverse operation of binary dilation. That is, any binary image \$\mathbb{I}\$ can be exactly reconstructed by applying an appropriate erosion to the binary image \$\mathbb{J}\$ = DILATE(\$\mathbb{I}\$, \$\mathbb{B}\$). (f) 2 pts. Medical CAT scans are an example of reflection imaging. (g) 2 pts. For viewing the DFT of an image \$\mathbb{I}\$ with real-valued pixels, it is usually most useful to display the logarithm of the DFT \$\mathbb{I}\$ is a usually most useful to display the logarithm of the DFT \$\mathbb{I}\$ is also real and even symmetric, then the DFT \$\mathbb{I}\$ is also real and even symmetric. (i) 2 pts. Thresholding is usually an effective technique for separating the object and background in any image \$\mathbb{I}\$, provided that the histgram \$H_1(k)\$ is multi-modal. Answer \$\mathbb{Should}\$ be \$\mathbb{P}\$ provided \$\mathcal{U}\$ by modal in the histogram of image \$\mathbb{I}\$ is to the histgram of another image \$\mathbb{I}_2\$. Then, even though the two images \$\mathbb{J}\$ and \$\mathbb{I}_2\$ might look quite different from lone another, their histograms \$H_1(k)\$ and \$H_{\mathbb{I}_2(k)}\$ will be identical. | | | be exactly reconstructed from the sampled digital image I. (d) 2 pts. The 3-D real-world scene $I(X,Y,Z)$ can be exactly reconstructed from the digital image I, provided that the horizontal and vertical spatial pixel sampling rates are greater than the Nyquist rates. (e) 2 pts. Binary erosion is the inverse operation of binary dilation. That is, any binary image I can be exactly reconstructed by applying an appropriate erosion to the binary image J = DILATE(I, B). (f) 2 pts. Medical CAT scans are an example of reflection imaging. (g) 2 pts. For viewing the DFT of an image I with real-valued pixels, it is usually most useful to display the logarithm of the DFT phase. (h) 2 pts. If I is an image that is real and even symmetric, then the DFT \(\bar{I}\) is also real and even symmetric. (i) 2 pts. Thresholding is usually an effective technique for separating the object and background in any image I, provided that the histgram $H_I(k)$ is multi-modal. Answer Shall be provided that the histgram of applying the histogram matching algorithm to match the histogram of image I ₁ to the histgram of another image I ₂ . Then, even though the two images I and I ₂ might look quite different from interval one another, their histograms $H_I(k)$ and $H_{I_2}(k)$ will be identical. | | | that the horizontal and vertical spatial pixel sampling rates are greater than the Nyquist rates. (e) 2 pts. Binary erosion is the inverse operation of binary dilation. That is, any binary image I can be exactly reconstructed by applying an appropriate erosion to the binary image I = DILATE(I, B). (f) 2 pts. Medical CAT scans are an example of reflection imaging. (g) 2 pts. For viewing the DFT of an image I with real-valued pixels, it is usually most useful to display the logarithm of the DFT phase. (h) 2 pts. If I is an image that is real and even symmetric, then the DFT I is also real and even symmetric. (i) 2 pts. Thresholding is usually an effective technique for separating the object and background in any image I, provided that the histgram H _I (k) is multi-modal. Answer Shall be Provided Chimodal in the histogram of interpretation of the histogram of another image I2. Then, even though the two images I and I2 might look quite different from one another, their histograms H _I (k) and H _{I2} (k) will be identical. | | | dilation. That is, any binary image I can be exactly reconstructed by applying an appropriate erosion to the binary image J = DILATE(I, B). (f) 2 pts. Medical CAT scans are an example of reflection imaging. (g) 2 pts. For viewing the DFT of an image I with real-valued pixels, it is usually most useful to display the log-arithm of the DFT phase. (h) 2 pts. If I is an image that is real and even symmetric, then the DFT I is also real and even symmetric. (i) 2 pts. Thresholding is usually an effective technique for separating the object and background in any image I, provided that the histgram $H_{\mathbb{I}}(k)$ is multi-modal. Answer Should be Provided thimeda in the histogram of another image I2. Then, even though the two images I and I2 might look quite different from the two images I and I2 might look quite different from the identical. | | | imaging. (g) 2 pts. For viewing the DFT of an image I with real-valued pixels, it is usually most useful to display the logarithm of the DFT phase. (h) 2 pts. If I is an image that is real and even symmetric, then the DFT I is also real and even symmetric. (i) 2 pts. Thresholding is usually an effective technique for separating the object and background in any image I, provided that the histgram $H_I(k)$ is multi-modal. An swell should be provided that the histgram $H_I(k)$ is multi-modal. But to the histgram of another image I2. Then, even though the two images I and I2 might look quite different from the two images I and I2 might look quite different from the identical. | | | valued pixels, it is usually most useful to display the logarithm of the DFT phase. (h) 2 pts. If I is an image that is real and even symmetric, then the DFT I is also real and even symmetric. (i) 2 pts. Thresholding is usually an effective technique for separating the object and background in any image I, provided that the histgram $H_{I}(k)$ is multi-modal. Answer Shald be provided that the histogram $H_{I}(k)$ is multi-modal. But matching algorithm to match the histogram of image I to the histgram of another image I2. Then, even though the two images I and I2 might look quite different from little one another, their histograms $H_{I}(k)$ and $H_{I2}(k)$ will be identical. | | | then the DFT I is also real and even symmetric. (i) 2 pts. Thresholding is usually an effective technique for separating the object and background in any image I, provided that the histgram $H_{\mathbb{I}}(k)$ is multi-modal. Answer Shald be provided the index matching algorithm to match the histogram of image I, to the histgram of another image I2. Then, even though the two images I and I2 might look quite different from little one another, their histograms $H_{\mathbb{I}}(k)$ and $H_{\mathbb{I}_2}(k)$ will be identical. | | | separating the object and background in any image \mathbb{I} , provided that the histgram $H_{\mathbb{I}}(k)$ is multi-modal. Answer Shall be provided "bimodal" in a provided "bimodal" in a provided "bimodal" is $\mathbb{I}_{\mathbb{I}}$. Then, even though the two images $\mathbb{I}_{\mathbb{I}}$ and $\mathbb{I}_{\mathbb{I}}$ might look quite different from in the two images $\mathbb{I}_{\mathbb{I}}$ and $\mathbb{I}_{\mathbb{I}}(k)$ and $\mathbb{I}_{\mathbb{I}}(k)$ will be identical. | | | matching algorithm to match the histogram of image \mathbb{I}_1 to the histogram of another image \mathbb{I}_2 . Then, even though the two images \mathbb{J} and \mathbb{I}_2 might look quite different from little one another, their histograms $H_{\mathbb{J}}(k)$ and $H_{\mathbb{I}_2}(k)$ will be identical. | | | | +4;5 | | (k) 2 pts. Run-length coding always reduces the amount of memory needed to store a ditial image. (l) 3 pts. The instructor used to date Leng. | I
tulke | | (l) 3 pts. The instructor used to date Lena. | - har | 2. 18 pts. Match the three images \mathbb{I}_1 - \mathbb{I}_3 shown below with their centered log-magnitude DFT's $\widetilde{\mathbb{I}}_4$ - $\widetilde{\mathbb{I}}_6.$ (a) 6 pts. $$DFT[I_1] =$$ (b) 6 pts. $$DFT[I_2] = \mathcal{T}_{\zeta}$$ (c) 6 pts. $DFT[I_3] = \mathcal{T}_{\zeta}$ (c) 6 pts. $$DFT[I_3] = I_5$$ 3. **20 pts**. The 10×10 binary image \mathbb{I} is shown below, where BLACK pixels have value logical ONE and WHITE pixels have value logical ZERO: Blob coloring with minor region removal is applied to \mathbb{I} to obtain a new image \mathbb{J}_1 , where only the largest region is retained. Image \mathbb{J}_2 is then defined by $\mathbb{J}_2 = \text{NOT}(\mathbb{J}_1)$. Blob coloring with minor region removal is then applied to \mathbb{J}_2 to obtain image \mathbb{J}_3 . Finally, the result image \mathbb{K} is defined by $\mathbb{K} = \text{NOT}(\mathbb{J}_3)$. Show the image K below: keeps the biggest blob and fills in the holes If you need "work images," use these: 4. 20 pts. The 256×256 image I is defined by $$I(i,j) = 40\cos\left[\frac{\pi}{64}(7i + 25j)\right] + 105 + 28\delta(i,j).$$ Find the DFT $\tilde{\mathbb{I}}$. $$II = II_1 + II_2 + II_3$$ where $$I_{i} = 40 \cos \left[\frac{\pi}{64} \left(7i + 25j \right) \right]$$ $$I_2 = 105$$ So $$\widetilde{\mathbb{I}} = \widetilde{\mathbb{I}}_1 + \widetilde{\mathbb{I}}_2 + \widetilde{\mathbb{I}}_3$$ $$I_{1}(i_{j}i) = 40\cos\left[\frac{2\pi}{256}(14i + 50j)\right]$$ NOTES, P.4.42: $$\widetilde{I}_{1}(u,v) = \frac{(40)(256)}{2} \left[\delta(u-14,v-50) + \delta(u+14,v+50) \right]$$ NOTES, P. 4.41: $$\widetilde{T}_{2}(u,v) = (256)(105) \delta(u,v) = 26880 \delta(u,v)$$ $$\widetilde{I}_3(u,v) = \frac{28}{256} = \frac{7}{64}$$ $$\widetilde{I}(u,v) = 5120 \left[\delta(u-14, v-50) + \delta(u+14, v+50) \right] + 26880 \delta(u,v) + \frac{7}{64}$$ 5. 17 pts. Consider the 4×4 image \mathbb{I} shown below, where the allowable range of gray levels is $0 \leq I(i,j) \leq 15$: Construct a new image $\mathbb J$ by applying the histogram flattening algorithm to $\mathbb I$. Show the new image $\mathbb J$ and its histogram $H_{\mathbb J}$ in the spaces provided below: | k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---------------------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----| | $H_{\mathbb{J}}(k)$ | 0 | 1 | 0 | 0 | 3 | ٥ | 0 | 3 | 1 | 2 | l | ٥ | 2 | 0 | 0 | 3 | Work Space: | k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |------|------|---|---|---|---|---|---|---|---|-----|------|------|------|------|------|------| | H(k) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 1 | 2 | 1 | 2 | 3 | | p(k) | 1/16 | 0 | 0 | O | O | 0 | 0 | 0 | 0 | 3/4 | 3/16 | 1/16 | 2/16 | 1/16 | 2/16 | 3/16 |