ECE 5273 Test 1

Wednesday, March 30, 2011 4:30 PM - 5:45 PM

	4:30 PM - 5:45 PM
ing 2011	Name: SOLUTION
Havlicek	Student Num:
culator. Of	This is an open notes test. You may use the official course lecture notes and a ther materials are not allowed. You have 75 minutes to complete the test. All your own.
	SHOW ALL OF YOUR WORK for maximum partial credit!
	GOOD LUCK!
SCORE:	
1. (20)	
2. (20)	
3. (20)	
4. (20)	
5. (20)	
TOTAL ((100):

Date:_____

On

1.	20 pts.	True or Fa	lse. Mark True only if the statement is always true.
	TRUE	FALSE	
			(a) 3 pts. Medical X-ray images are an example of reflection absorption imaging.
		$\overline{\chi}$	(b) 3 pts. Medical CAT scans are an example of emission absorption imaging.
		<u>X</u>	(c) 3 pts. Any image \mathbb{I} can be exactly reconstructed from its histogram $H_{\mathbb{I}}(k)$.
		<u>X</u>	(d) 3 pts. The full-scale contrast stretch is an example of a geometric image operation.
			(e) 3 pts. Binary erosion removes holes of insufficient size. Object 5
	X		(f) 3 pts. Because of the inherent periodicity of the 2D DFT and IDFT equations, the original image is always implied to be periodic.
		X	(g) 2 pts. The famous <i>Lena</i> image originally appeared in the November, 1972 issue of <i>Better Homes and Gardens</i> .

2. **20 pts**. Consider the binary contour image shown below, where white represents LOGIC_ZERO and black represents LOGIC_ONE.

(a) 10 pts. Let the upper left pixel have coordinates (row,col) = (0,0) and consider that the LOGIC_ONE pixel located at (1,1) is the initial pixel of the contour. Give a chain code for the contour.

11 700666075670700

Workspace for Problem 2...

(b) 10 pts. Four-connected Blob Coloring (connected components analysis) is applied to the image with minor region removal. Show the result below.

Since this is a 4-connected algorithm, the diagonal connections in the contour are breaks between blubs. After coloring and minor region removal, only the largest blub will remain.

3. **20 pts**. Consider the 4×4 image \mathbb{I} shown below, where the allowable gray levels are $0 \le I(i,j) \le 15$:

Construct a new image $\mathbb J$ by applying the histogram flattening (equalization) algorithm to $\mathbb I$. Show the new image $\mathbb J$ and its histogram $H_{\mathbb J}$ in the spaces provided below:

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$H_{\mathbb{J}}(k)$	0	1	0	0	3	0	0	3	-	2	1	0	2	0	0	3

4. 20 pts. Consider the continuous (optical) image

$$I_C(x,y) = e^{-(2x+3y)}u(x)u(y),$$

where u(x) is the unit step function given by

$$u(x) = \begin{cases} 1, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Find the continuous Fourier transform $\widetilde{I}(\omega_x, \omega_y)$.

Hint:
$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\begin{split} \widehat{T}_{c}(\omega_{x_{1}}\omega_{y}) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I_{c}(x_{1}y) e^{-j2\pi} (x\omega_{x}+y\omega_{y}) \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(2x+3y)} u_{c}(x_{1})u_{1}(y) e^{-j2\pi} (x\omega_{x}+y\omega_{y}) dx dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-2x} e^{-j2\pi} x\omega_{x} u_{1}(x_{1}) e^{-3y} e^{-j2\pi} y\omega_{y} u_{1}(y_{1}) dx dy \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y})} y_{u(y_{1})} dy \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y})} y_{u(y_{1})} dy \\ &= \left[\frac{-1}{2+j2\pi\omega_{x}} e^{-(2+j2\pi\omega_{x})} \chi_{u(x_{1})} \right] \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y})} y_{u(y_{1})} dy \\ &= \left[\frac{-1}{2+j2\pi\omega_{x}} e^{-(2+j2\pi\omega_{x})} \chi_{u(x_{1})} \right] \left[\frac{-1}{3+j2\pi\omega_{y_{1}}} e^{-3y_{1}} \chi_{u(y_{1})} \right] \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{y_{1}})} e^{-3y_{1}} dy \\ &= \left[\frac{-1}{2+j2\pi\omega_{x_{1}}} e^{-2x_{1}} \chi_{u(x_{1})} \chi_{u(x_{1})} \right] \left[\frac{-1}{3+j2\pi\omega_{y_{1}}} e^{-3y_{1}} \chi_{u(y_{1})} \right] dy \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y_{1}})} dy \\ &= \left[\frac{-1}{2+j2\pi\omega_{x_{1}}} e^{-2x_{1}} \chi_{u(x_{1})} \chi_{u(x_{1})} \right] \left[\frac{-1}{3+j2\pi\omega_{y_{1}}} e^{-3y_{1}} \chi_{u(y_{1})} \right] dy \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y_{1}})} dy \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y_{1}})} dy \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y_{1}})} dy \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y_{1}})} dy \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y_{1}})} dy \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y_{1}})} dx \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y_{1}})} dx \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{y_{1}})} dx \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{x_{1}})} dx \\ &= \int_{-\infty}^{\infty} e^{-(2+j2\pi\omega_{x_{1})} \chi_{u(x_{1})} dx \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{x_{1})} dx \\ &= \int_{-\infty}^{\infty} e^{-(3+j2\pi\omega_{x_{1}})} \chi_{u(x_{1})} dx \\$$

More Workspace for Problem 4...

5. 20 pts. Draw lines to match the images with their log-magnitude DFT spectra.

