ECE 5273 Test 1

Monday, April 2, 2012 4:30 PM - 5:45 PM

oring 2012	Name: SOLUTION
r. Havlicek	Student Num:
	otes test. You may use the official course lecture notes and a not allowed. You have 75 minutes to complete the test. All
SHOW ALL OF	YOUR WORK for maximum partial credit!
	GOOD LUCK!
SCORE:	
1. (25)	
2. (25)	
3. (25)	
4. (25)	
	<u>. </u>
TOTAL (100):	

Date:____

1. 25 pts. 7	True or Fa	llse. Mark True only if the statement is always true.
TRUE	FALSE	reflection
		(a) 2 pts. Imaging sonar is an example of absorption maging.
X		(b) 2 pts. A binary median filter removes both gaps and peninsulas of insufficient size.
		(c) 2 pts. The DFT of a real-valued digital image is real and conjugate symmetric.
<u></u>	X_	(d) 2 pts. A flat histogram usually indicates an overexposed image.
·	<u>X</u>	(e) 2 pts. Run-length coding always reduces the storage requirement for a digital image. See Notes Page 2.24
	<u>X</u>	(f) 2 pts. To implement linear convolution of two 128 × 128 digital images by multiplying DFT's, it is generally necessary to zero pad the images to a size of 512 × 512
		(g) 2 pts. The binary OPEN-CLOSE morphological filter tends to link neighboring holes together.
	<u>X</u>	(h) 2 pts. The full-scale contrast stretch is an example of a geometric image operation.
		(i) 2 pts. For a typical digital image, logarithmic range compression is useful for displaying the DFT magnitude.
		(j) 2 pts. Frame averaging is a common technique for detecting motion in a video sequence.
X		(k) 2 pts. Aliasing always occurs when an optical (continuous) Gaussian image is spatially sampled to make a digital image. Not band limited
		(l) 3 pts . When electrical engineers say "Trans SP," they usually mean <i>IEEE Transactions on South Park</i> .

2. **25 pts**. Consider the 4×4 image \mathbb{I} shown below, where the allowable range of gray levels is $0 \leq I(i,j) \leq 15$:

$$\mathbb{I} = \begin{bmatrix} 10 & 3 & 2 & 1 \\ 4 & 3 & 2 & 10 \\ \hline 3 & 4 & 9 & 9 \\ \hline 2 & 1 & 4 & 9 \end{bmatrix}$$

Construct a new image $\mathbb J$ by applying the histogram flattening algorithm to $\mathbb I$. Show the new image $\mathbb J$ and its histogram $H_{\mathbb J}$ in the spaces provided below:

$$J = \begin{array}{|c|c|c|c|c|c|}\hline 15 & 8 & 5 & 2 \\\hline 10 & 8 & 5 & 15 \\\hline 8 & 10 & 13 & 13 \\\hline 5 & 2 & 10 & 13 \\\hline \end{array}$$

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$H_{\mathbb{J}}(k)$	0	0	2	0	0	3	0	0	3	0	3	0	0	3	0	2

Work Space:

		16/16	8/16	5/16	2/16
π		11/16	8/16	5/16	14/6
7	-	8/16	1/16	14/16	14/16
		5/16	2/16	1/16	14/1

(i,j) = INT (15),(i,j) + 0.5	7(1)	J.(1,1)	工(约)
	2	2/16	
	5	5/16	2
	8	8/16	3
	10	1/16	4
	13	14/16	9
5	15	17/6	10

3. **25** pts. A 3D scene consisting of a black square against a white background is imaged with a pinhole camera having a focal length of 35mm. The 3D space coordinates (X,Y,Z) of the four corners of the square in units of meters are

$$P_1 = (5.9994 \text{ m}, -0.0349 \text{ m}, 5.0605 \text{ m}),$$

 $P_2 = (2.0698 \text{ m}, 5.4638 \text{ m}, 3.5364 \text{ m}),$
 $P_3 = (2.0698 \text{ m}, 1.9997 \text{ m}, 1.5364 \text{ m}), \text{ and}$
 $P_4 = (2.0000 \text{ m}, 0.0000 \text{ m}, 5.0000 \text{ m}).$

Find the projections of the four corners in the image plane and carefully sketch the image that is obtained. $f = 0.035 \, \text{m} \qquad (x,y) = \frac{f}{Z}(X,Y)$

P1:
$$(x_1y_1) = \frac{0.035}{5.0605} (5.9994, -0.0349) = (0.0415, -0.0002)$$

P2:
$$(x,y) = \frac{0.035}{3.5364}(2.0698,5.4638) = (0.0205, 0.0541)$$

P3:
$$(x_1y) = \frac{0.035}{1.5364} (2.0698, 1.9997) = (0.0472, 0.0456)$$

P4:
$$(x_1y) = \frac{0.035}{5.000}(2.0000, 0.0000) = (0.0140, 0)$$

The above are in meters.

In mm,

$$P_{1} = (41.5, -0.2)$$

$$P_{2} = (20.5, 54.1)$$

$$P_{3} = (47.2, 45.6)$$

$$P_{4} = (14.0, 0)$$

4. 25 pts. Consider a
$$6 \times 6$$
 digital image I given by

$$I(i,j) = 3 + 12\delta(i,j) + \cos\left[\frac{2\pi}{6}(i+2j)\right] + 2\cos\left[\frac{2\pi}{6}(2i-j)\right].$$

(a) 13 pts. Find a closed form expression for the DFT $\widetilde{\mathbb{I}}$.

From the DFT pairs on Notes Pages 4.40-4.42, you can write down directly

$$\Upsilon(u,v) = 18\delta(u,v) + 2 + 3\left[\delta(u-1,v-2) + \delta(u+1,v+2)\right]
+ 6\left[\delta(u-2,v+1) + \delta(u+2,v-1)\right]$$

$$-3 \le u,v \le 2$$

(b) 12 pts. Show the real and imaginary parts of the centered DFT array in the space provided below: