ECE 5273 Test 1

Wednesday, March 9, 2016 4:30 PM - 5:45 PM

You have 75 minutes to complete the test. A
T TT 0771
LUCK!
•
-

Date:_____

Name:_____

1. 20 pts . TRUE	True or Fa FALSE	lse. Mark <i>True</i> only if the statement is always true.
<u>X</u>		(a) 2 pts. The YCbCr color space was originally used for color TV so that black and white TV's could continue to function by receiving and displaying only the Y component.
	<u>X</u>	(b) 2 pts. Any digital image can be exactly reconstructed from its histogram.
<u>X</u>		(c) 2 pts. For a given structuring element or window, the binary Median and Majority filters are identical.
	<u>X</u>	(d) 2 pts. Blob coloring is a simple method for generating the histogram of a color image.
X_		(e) 2 pts. The binary OPEN and CLOSE filters generally do not affect the overall sizes of objects that are sufficiently large.
<u>X</u>		(f) 2 pts. Snapping a picture with your cell phone camera is an example of reflection imaging.
	<u>X</u>	(g) 2 pts. MRI is a type of absorption imaging. Emission
	<u>X</u>	(h) 2 pts. The 2D centered DFT is useful and intuitive because it displays the highest spatial frequencies in the center of the DFT magnitude image.
$\frac{1}{\lambda}$		(i) 2 pts. The 2D discrete-space Fourier transform (DSFT) of any digital image is periodic.
011	—————————————————————————————————————	(j) 2 pts. Trump will be president of the United States.

2. **20 pts**. Consider the 4×4 image I shown below, where the allowable range of gray levels is $0 \le I(i, j) \le 15$:

Construct a new image K by applying the histogram shaping algorithm to make the histogram more "ramp like." The **desired** histogram shape is given by:

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$H_{\mathbf{K}}(k)$	1	0	0	2	0	0	0	3	0	0	0	4	0	0	0	6

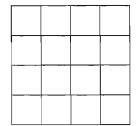
Show the new image K and its histogram H_K in the spaces provided below.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$H_{\mathbf{K}}(k)$	1	0	0	2	0	0	0	3	0	0	0	2	O	O	0	8

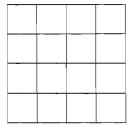
Work space is provided on the next page.

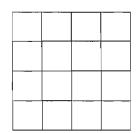
Workspace for Problem 2:

6/16	3/16	6/16	16/16
3/16	1/16	6/16	1/16
16/16	8/16	8/16	11/16
16/18	16/16	1/16	16/16

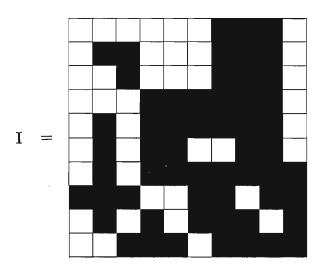

	7	3	7	15
K=	3	0	7	15
1 \	15	11	11	15
	15	15	15	15

For

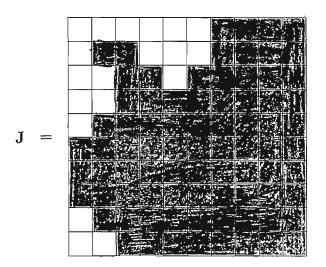

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
H(k)	1	2	3	0	0	0	0	0	0	0	0	0	0	2	3	5
p(k)	16	2/16	3/16	0	0	0	0	0	0	0	0	0	0	2/16	3/16	5/16
P(k)	1/16	3/16	6/16	6/16	6/16	6/16	6/16	6/16	6/16	6/18	6/16	6/16	6/16	8/16	1/16	16/16


Desireds

	k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	H(k)	1	0	0	2	٥	0	0	3	0	٥	0	4	0	0	0	6
Ī	p(k)	1/16	O	0	2/16	0	C	O	3/16	0	0	0	4/16	0	0	0	6/16
Ī	P(k)	1/16	1/16	1/16	3/16	3/16	3/16	3/16	6/16	6/16	6/16	6/16	10/16	0/16	10/16	10/16	16/11



	Ī	

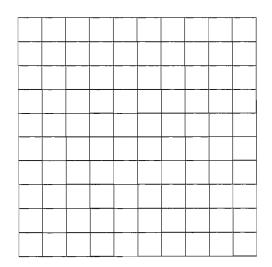


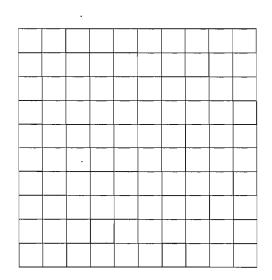
3. **20 pts**. Consider the 10×10 binary image I shown below, where BLACK = LOGIC ONE and WHITE = LOGIC ZERO.

Form a new binary image J = CLOSE(I, B) by applying a binary morphological CLOSE filter with structuring element B = CROSS(5). Handle edge effects by replication.

Show the new image ${\bf J}$ in the space provided below:

There is work space on the next page.


Workspace for Problem 3:


DILATE (I, B)

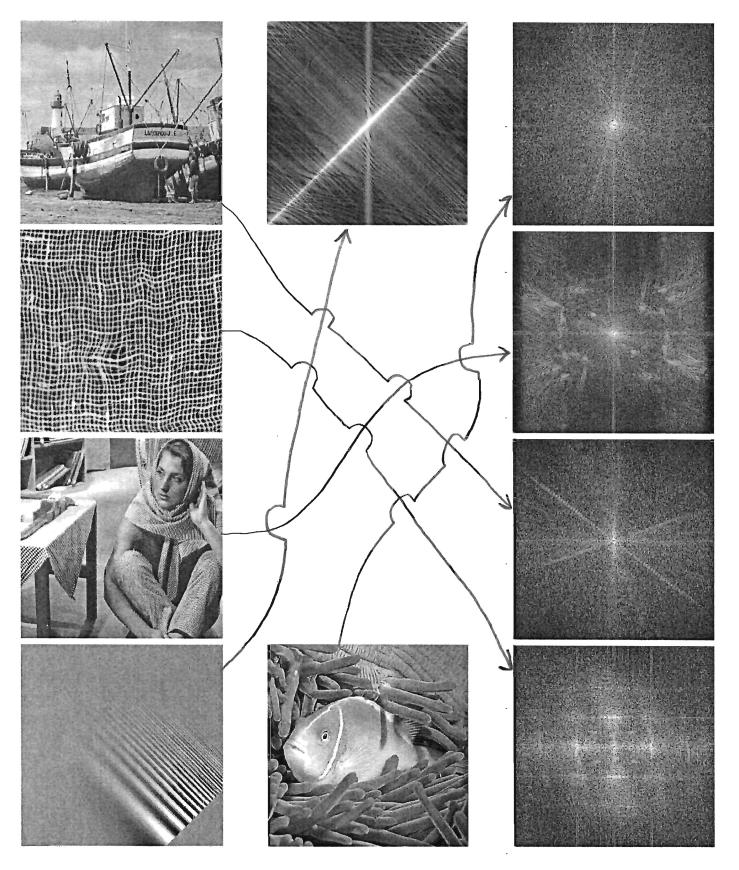
0	1	1	0	0	-	- 1	1	ì	1
1	1	1	1	0	T	1	1	1	1
0	1		-	1	1	1	ł	1	1
Ô	1	ì	1	1	ŀ	1	ı	1	1
1	1	1	-	1	1	1	1	1	A
1	-	1	1	1	1	1	i	l	I
1	1	1	1	1	1	1	1	1	1
1	1	1	1	١	1	1	1	1	J
1	1	l	1	l	l	1	1	I	1
0	l	i	l	1	1	1	- (-(1

J = ERODE [DILATE (I,B), B]

0	0	0	0	0	0	8	ı	Q	â
0	1		O	O	0	I	-	1	1
O	0	a	1	0	entre.		l	1	ı
0	0	1	1	t	1	l	1	l	l
0	_	ŀ	l	l	1	ŀ	1	t	١
8		l	l	1	1		1	1	1
8	arcs.		ł	1	burg	l	1	t	1
-	CEST!	8	ß	-	B		P	1	1
0	-	1	1	1	ŀ	1	ŧ	1	1
O	0	8	•	l	l	l	١	Ī	1

4. 20 pts. Consider a 6×6 digital image I given by

$$I(m,n) = 3 + 12\delta(m,n) + \cos\left[\frac{2\pi}{6}(m+2n)\right] + 2\cos\left[\frac{2\pi}{6}(2m-n)\right],$$


where m = column and n = row.

(a) 10 pts. Find a closed form expression for the DFT $\widetilde{\mathbf{I}}$.

From the DFT pairs on pp. 126-129 of the notes, we have
$$3 \stackrel{\text{DFT}}{\longleftrightarrow} 108 \delta(u,v)$$
 $12\delta(m,n) \stackrel{\text{DFT}}{\longleftrightarrow} 12$ $\cos\left[\frac{2\pi}{6}(m+2n)\right] \stackrel{\text{DFT}}{\longleftrightarrow} 18\left[\delta(u-1,v-2)+\delta(u+1,v+2)\right]$ $2\cos\left[\frac{2\pi}{6}(2m-n)\right] \stackrel{\text{DFT}}{\longleftrightarrow} 36\left[\delta(u-2,v+1)+\delta(u+2,v-1)\right]$ So: $\Upsilon(u,v) = 108\delta(u,v) + 12 + 18\left[\delta(u-1,v-2)+\delta(u+1,v+2)\right] + 36\left[\delta(u-2,v+1)+\delta(u+2,v-1)\right]$

(b) 10 pts. Show the real and imaginary parts of the centered DFT array in the space provided below:

5. 20 pts. Draw lines to match the images with their log-magnitude DFT spectra.

