$\begin{array}{c} \mathrm{ECE}\ 5273 \\ \mathrm{Test}\ 1 \end{array}$

Wednesday, March 28, 2018 4:30 PM - 5:45 PM

oring 2018	Name: SOLUTION
r. Havlicek	Student Num:
	an open notes test. You may use the official course lecture notes and a aterials are not allowed. You have 75 minutes to complete the test. All own.
SHO	W ALL OF YOUR WORK for maximum partial credit!
	GOOD LUCK!
SCORE:	
1. (20)	
2. (20)	
3. (20)	
4. (20)	
5. (20)	
	·
TOTAL (100):	
` '	
	t I have neither given nor received inappropriate aid in the completion of this
Name:	Date:

1. 20 pts.	True or Fa	lse. Mark True only if the statement is always true.
TRUE	FALSE	
		(a) 2 pts. X-ray computed tomography (CT scan) is an example of absorption imaging. Notes p. 1.25
		(b) 2 pts. In the projection equation, the focal length f is the distance from the lens center to an object in the real world that is in focus. Notes p. 1.35
	<u>X</u>	(c) 2 pts. Any digital image can be exactly reconstructed from its histogram. Notes p. 2.17
		(d) 2 pts. The binary OPEN and CLOSE filters generally do not affect the overall sizes of objects that are sufficiently large. Notes p. 2.88
<u>X</u>		(e) 2 pts. If a binary morphological erosion filter is applied over and over again enough times, it will eventually reduce any binary image I to an image of all zeros. Notes pp. 2.73-2.75
<u>X</u>		(f) 2 pts. The full-scale contrast stretch is an example of a linear point operation. Notes p. 3.14
	X	(g) 2 pts. Frame-differencing is a simple but powerful technique for smoothing noise in digital video frames.
X		(h) 2 pts. A geometric image operation generally requires a spatial mapping of image coordinates followed by interpolation. Notes p. 3.59
X_		(i) 2 pt. For a practical digital image I, the 2D DFT \widetilde{I} is given by equally spaced samples of the DSFT \widetilde{I}_D . Notes p. 4,108
OH	₩ À ;	(j) 2 pt. Mexico will pay for Trump's border wall.

2. 20 pts. Consider the 4×4 image I shown below, where the allowable range of gray levels is $0 \le I(i, j) \le 15$:

Construct a new image K by applying the histogram matching algorithm to match the histogram of image I to the desired histogram given by the histogram of image I' shown below:

$$\mathbf{I'} = \begin{array}{|c|c|c|c|c|c|}\hline 6 & 15 & 12 & 9 \\ \hline 9 & 15 & 15 & 12 \\ \hline 0 & 12 & 15 & 4 \\ \hline 0 & 0 & 2 & 2 \\ \hline \end{array}$$

Show the new image ${\bf K}$ and its histogram $H_{\bf K}$ in the spaces provided below.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$H_{\mathbf{K}}(k)$	2	0	2	0	2	0	0	0	0	2	0	0	4	0	0	4

Work space is provided on the next page.

Workspace for Problem 2:

$$I = \begin{array}{c} 4597 \\ 61089 \\ 710118 \\ 46511 \end{array}$$

	6	15	12	9
T/=	9	15	15	12
_	O	12	15	4
	0	0	2	2

For I:

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
H(k)	0	O	0	0	2	2	2	2	2	2	2	2	0	0	0	0
p(k)			9/16		2/1	2/16	2/16	3/1	2/16	3/16	3/16	2/16	9/16	%16	0/16	
P(k)	9/16	0/18	2/16	916	2/16	1/6	9/6	8/16	10/16	12/16	14/16	416	19/6	16/16	16/16	16/16

DESIRED (I'): {Pe}

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13.	14	15
H(k)	3	0	2	0	Ī	0	Ī	0	0	2	0	0	3	0	0	4
p(k)	3/16	%	2/11	%	1/16	1/16	1/16	9/10	0/16	3/16	9/16	Mb	3/16	0/16	%16	A/16
P(k)	3/16	3/6	5/16	2/18	6/16	1/6	7/16	7/1	7/1	9/6	9/16	9/16	12/16	12/16	12/16	16/10

$$K = arg min \{P_{K}(r)\} J(m,n)\} = \begin{cases} 0 & 2 & 12 & 9 \\ 4 & 15 & 12 & 12 \\ 9 & 15 & 15 & 12 \\ 0 & 4 & 2 & 15 \end{cases}$$

3. 20 pts. Consider the binary contour image shown below, where white represents LOGIC_ZERO and black represents LOGIC_ONE.

Direction codes from Notes p. 2.109:

4 - 2 0

(a) 10 pts. Let the upper left pixel have coordinates (row,col) = (0,0) and consider that the LOGIC_ONE pixel located at (1,1) is the initial pixel of the contour. Give a chain code for the contour. Don't forget to include the coordinates of the initial pixel and the end-of-code "flag."

(1,1) 7006666075670700 22222224442210073

Workspace for Problem 3...

(b) 10 pts. Four-connected Blob Coloring (connected components analysis) is applied to the image with minor region removal. Show the result below.

For 4-connected topology, the diagonal connections are breaks between separate blubs.

After blob coloring, blob counting, and minor region removal, only the largest blob will remain.

4. 20 pts. Consider a 6 × 6 digital image I given by

$$I(m,n) = 5 + 10\delta(m,n) + 2\cos\left[\frac{2\pi}{6}(2m - 3n)\right] + \sin\left[\frac{2\pi}{6}(3m + 2n)\right],$$

where m = column and n = row.

(a) 10 pts. Find a closed form expression for the DFT $\tilde{\mathbf{I}}$.

Notes p.4.127: 108(min) 25 10

Notes p. 4.129:
$$\sin \left[2\pi \left(\frac{3}{6} m + \frac{2}{6} n \right) \right] \xrightarrow{DFT} \left(\frac{1}{2} \right) (6) (6) \left[\sigma(u+3, v+2) - \sigma(u-3, v-2) \right] = \frac{18}{6} \left[\sigma(u+3, v+2) - \sigma(u-3, v-2) \right]$$

-> But, see notes p. 4.64: this 2D DFT must be horizontally periodic with period M=6 and vertically periodic with period N=6.

-> 50, accounting for the periodicity, we have:

$$\widetilde{\Xi}(u,v) = 180\delta(u,v) + 10 + 36[\delta(u-2,v\pm3) + \delta(u+2,v\pm3)]$$
+ $\int 18[\delta(u\pm3,v+2) - \delta(u\pm3,v-2)]$

(b) 10 pts. Show the real and imaginary parts of the centered DFT array in the space provided below:

- 1	\U						
	V /	-3	− S	-1	0	1	2
	-3	10	46	10	10	10	46
	-2	16	lo	10	10	10	10
ĩ		10	10	10	10	10	10
T	0	10	10	10	190	10	(D
	1		10				
	2	10	10	10	10	10	10

	Lu						
	~/	-3	-2	-1	0	1_	2
	-3	0	ಲ	0	0	0	0
	-2	18	0	0	0	Ô	0
	ر- j ×	0	0	0	0	0	0
7	۵ ٔ ۲	0	0	0	0	0	0
	1	0	0	0	0	0	0
	2	-18	O	0	0	0	0

NOTE: this answer can be directly verified using matlal.

5. **20 pts.** Draw lines to match the images with their log-magnitude DFT spectra.

