ECE 5273 Test 2

Wednesday, April 8, 1998, 4:30 PM - 5:45 PM

_	ing 1998 Havlicek				ame: 5 tudent Nur	OLU7 n:	ION	
		There are seven						
All	Students	s: Work proble	ems 1 and 2.					
thro	ough 7. Ea	rolled for un ach of these pr wish to have g	oblems count					
7. I	Each of the	rolled for gra ese problems c ave graded.						_
	SHO	W ALL OF Y	OUR WORK	for maxi	mum partia	l credit! G	ood Luck!	
ı	Circle the	numbers of th	ne problems y	ou wish t	o have grac	led:		
	1.	2.	3.	4.	5.	6.	7.	
SC	ORE:							
1.	(25)		4. (20/15)	7.	(20/15)		
2.	(15)		5. (20/15)	· · · · · · · · · · · · · · · · · · ·			
3.	(20/15)		6. (20/15)				
TC	OTAL (100):						

1. 25 pts. True or False. Mark the correct answer. Mark True only if the statement is always true. TRUE **FALSE** (a) 2 pts. If two images are discrete and periodic with the same period, then their wraparound convolution equals their linear convolution. (b) 2 pts. If I is a $N \times N$ image with DFT \tilde{I} and J is a $N \times N$ image with DFT \tilde{J} , then the pointwise product $\tilde{I} \otimes \tilde{J}$ is 1/N times the DFT of the wraparound convolution of I and J. (c) 2 pts. With appropriate zero padding, wraparound convolution can be used to implement linear convolution. (d) 2 pts. When a linear filter is used to smooth white noise, it is usually a high pass filter. (e) 2 pts. Streaking and blotching are artifacts that can occur when a median filter is used with a window (structuring element) B that is too small. (f) 2 pts. A linear translation invariant digital image processing system can be completely characterized by the system unit pulse response. (g) 2 pts. It is always possible to define a bandpass filter by taking the difference of two low-pass filters that are identical except for a scaling factor. (h) 2 pts. Nonlinear filtering is based on frequency or spectrum shaping. (i) 2 pts. The DFT is one of the most useful tools for analyzing the operation of nonlinear filters. (j) 2 pts. The usual convention for handling edge effects in nonlinear filtering is replication. (j) 2 pts. The median filter removes positive impulses while preserving negative impulses.

(1) 3 pts. The instructor used to date Lena.

- 2. 15 pts. Short answer.
 - (a) 3 pts. A desirable property of the MED, OPEN-CLOSE, and CLOSE-OPEN filters is that they can retain important image structures. Name a disadvantage of these filters.

They can produce streaking and blotching effects which can appear as artifacts.

(b) 3 pts. Suppose that I is an image. Write an equation that describes a morphological image processing operation to detect **peaks** in I.

$$\mathbb{J}_{peak} = \underline{\mathbb{T}} - \underline{\mathbb{T}} \circ \mathbf{B}$$

(c) 3 pts. Name two typical uses for for low-pass filters.

1. Smooth noise 2. Blur image details to emphasize gross features.

(d) **3 pts**. Give the frequency response for a **high-pass** digital filter that approximates the **continuous** Laplacian.

$$\widetilde{H}(u,v) = A(u^2+v^2)/N^2$$
; $0 \le |u|, |v| \le \frac{N}{2} - 1$

(e) **3 pts**. State one of the two constraints we used to regularize the ill-posed problem of restoring an image that has been blurred and corrupted by additive white noise.

The data constraint: minimize 116x1-111.

The smoothness constraint: minimize || V2 Î ||

3. UG 20 pts. / G 15 pts. Consider a linear digital image processing system with frequency response

$$\widetilde{\mathbb{H}} = \left[\widetilde{H}(u,v)\right].$$

Suppose that the system input is the $N \times N$ image \mathbb{I} defined by

$$I(i,j) = \cos\left[\frac{2\pi}{N}\left(bi + cj\right)\right].$$

Find the system response J(i,j) = H(i,j) * I(i,j).

$$J(i,j) = \left| \widetilde{H}(b,c) \right| \cos \left[\frac{2\pi}{N} \left(b_i + c_j \right) + 4 \widetilde{H}(b,c) \right]$$

4. UG 20 pts. / G 15 pts. Pixels in the 4×4 image I shown below take gray levels in the range $\{0, 1, 2, ..., 99\}$. The image is sent through a communication channel where it is corrupted by noise. The received image I is shown below.

$$I = \begin{bmatrix} 72 & 72 & 73 & 74 \\ 72 & 99 & 72 & 74 \\ 74 & 75 & 71 & 70 \\ 75 & 71 & 69 & 69 \end{bmatrix}$$

$$J = \begin{bmatrix} 72 & 72 & 73 & 74 \\ 72 & 99 & 72 & 74 \\ 74 & 75 & 0 & 70 \\ 75 & 71 & 69 & 69 \end{bmatrix}$$

Choose an appropriate morphological operation to restore the received image by attenuating the noise. Use the window (structuring element) $\mathbb{B} = \text{CROSS}(5)$:

Handle edge effects by replication. Show the restored image $\hat{\mathbb{I}}$ below. You may use page 6 for work space.

Show the restored image here:

More work space for problem 4...

		г "П
11/ -	DILATE	
11	UILAIE	ן שו
, ·		

72	99	74	74
99	99	99	74
75	99	75	74
75	75	71	70

72	72	74	74
72	99	74	74
75	75	71	70
75	71	70	70

5. UG 20 pts. / G 15 pts. The $N \times N$ digital image \mathbb{I}_1 is defined by

$$I_1(i,j) = 5 + 3\delta(i,j)$$

and the $N \times N$ digital image \mathbb{I}_2 is defined by

$$I_2(i,j) = 1 + 6\cos\left[\frac{2\pi}{N}(2i + 7j)\right].$$

Let the $N \times N$ digital image \mathbb{J} be the wraparound convolution of \mathbb{I}_1 and \mathbb{I}_2 . Find $\widetilde{\mathbb{J}}$, the DFT of \mathbb{J} .

$$\begin{split} \widetilde{\Pi}_{1} &= 5N\sigma(u,v) + \frac{3}{N} \\ \widetilde{\Pi}_{2} &= N\sigma(u,v) + \frac{6N}{2} \left[\sigma(u-2,v-7) + \sigma(u+2,v+7) \right] \\ \widetilde{\Pi} &= DFT \left[\Pi_{1} \bigoplus \Pi_{2} \right] = N\widetilde{\Pi}_{1} \widetilde{\Pi}_{2} \\ &= N \left\{ 5N^{2}\sigma(u,v) + 5N\sigma(u,v) \frac{6N}{2} \left[\sigma(u-2,v-7) + \sigma(u+2,v+7) \right] + 3\sigma(u,v) + \frac{16N}{2N} \left[\sigma(u-2,v-7) + \sigma(u+2,v+7) \right] \right\} \\ &= 5N^{3}\sigma(u,v) + 3N\sigma(u,v) + 9N \left[\sigma(u-2,v-7) + \sigma(u+2,v+7) \right] \end{split}$$

$$\widetilde{\mathbf{J}} = \left[5N^3 + 3N \right] \sigma(\mathbf{u}, \mathbf{v}) + 9N \left[\sigma(\mathbf{u} - \mathbf{v}, \mathbf{v} - \mathbf{v}) + \sigma(\mathbf{u} + \mathbf{z}, \mathbf{v} + \mathbf{v}) \right]$$

6. UG 20 pts. / G 15 pts. Consider the 2×2 images \mathbb{I}_1 and \mathbb{I}_2 shown below. Pixels in these images take gray levels in the range $\{0, 1, 2, ..., 15\}$. Pixel $I_1(i, j)$ is the pixel in ROW i and COLUMN j of image \mathbb{I}_1 .

Let the image $\mathbb{J}=\mathbb{I}_1*\mathbb{I}_2$ be the **linear** convolution of \mathbb{I}_1 and \mathbb{I}_2 . Compute the image \mathbb{J} directly. Show your answer below.

$$J(i,j) = \sum_{m=0}^{j} \sum_{n=0}^{j} I_{i}(m,n) I_{z}(i-m,j-n)$$

$$J(0,0) = I_1(0,0) I_2(0,0) + I_1(0,1) I_2(0,-1) + I_1(1,0) I_2(-1,0) + I_1(1,1) + I_2(-1,-1)$$

$$= 3 + 0 + 0 + 0 = 3$$

$$J(0,1) = I_1(0,0)I_2(0,1) + I_1(0,1)I_2(0,0) + I_1(1,0)I_2(-1,0)$$

$$= 1+6+0+0=7$$

$$\int (1,0) = I_1(0,0)I_2(1,0) + I_1(0,1)I_2(1,-1) + I_1(1,0)I_2(0,0) + I_1(1,1)I_2(0,-1)$$

$$= 4 + 0 + 0 + 0 = 4$$

$$J(1,1) = I_1(0,0)I_2(1,1) + I_1(0,1)I_2(1,0) + I_1(1,0)I_2(0,1) + I_1(1,1)I_2(0,0)$$

$$= 1 + 8 + 0 + 3 = 12$$

Show the result image here:

$$J = \begin{bmatrix} 3 & 7 \\ 4 & 12 \end{bmatrix}$$

7. UG 20 pts. / G 15 pts. Pixels in the 4×4 image I shown below take gray levels in the range $\{0, 1, 2, ..., 99\}$. The image is sent through a communication channel where it is corrupted by noise. The received image J is shown below.

$$I = \begin{array}{|c|c|c|c|c|c|c|c|}\hline 72 & 72 & 10 & 10\\\hline \end{array}$$

$$J = \begin{array}{|c|c|c|c|c|c|c|}\hline 65 & 72 & 10 & 10\\\hline 72 & 73 & 10 & 10\\\hline 72 & 72 & 22 & 10\\\hline 72 & 75 & 10 & 10\\\hline \end{array}$$

Use a median filter to restore the received image by attenuating the noise. For the window (structuring element), use $\mathbb{B} = \text{ROW}(3) = \{(0,-1),(0,0),(0,1)\}$. Handle edge effects by replication. Show the restored image \mathbb{K} below. Also, find the *ISNR* (improvement in signal to noise ratio) for the restored image \mathbb{K} relative to the received image \mathbb{J} . You may use page 10 for work space.

Show the restored image here:

$$\mathbb{K} = \begin{cases} 65 & 65 & 10 & 10 \\ 72 & 72 & 10 & 10 \\ 12 & 12 & 22 & 10 \\ 12 & 72 & 10 & 10 \end{cases}$$

More work space for problem 7...

$$MSE(I) = \frac{49+1+144+9}{16} = \frac{203}{16} = 12.6875$$
 $MSE(IK) = \frac{49+49+144}{16} = \frac{242}{16} = 15.125$

$$[K=M=[J,B]]$$

1					
	65	65	10	10	
	72	72	10	10	
	72	72	22	10	
	72	72	10	10	

JJ-II	/(J-I)2
, ,	/ (4 1)

7 49	%	%	%
δ	1/1	00	%
%	%	144	%
%	3/9	%	%

