ECE 5273 Homework 2

Spring 2010 Dr. Havlicek

Consider a scene consisting of a black cube against a white background. Specified in units of meters, the corners of the bottom face of the cube have world coordinates (X,Y,Z) given by

 $P_1 = (0.00, 0.00, 0.00),$ $P_2 = (0.00, 0.00, 0.05),$ $P_3 = (0.05, 0.00, 0.05),$ $P_4 = (0.05, 0.00, 0.00).$

Another corner of the cube is located at $P_5 = (0.00, 0.05, 0.00)$. Two rotations are then applied to the cube while keeping the point P_1 fixed at (0.00, 0.00, 0.00) as follows:

- 1. Keeping the bottom face of the cube in the X-Z plane, the cube is rotated clockwise by 30° so that edge $\overline{P_1P_2}$ makes an angle of 30° with the positive Z-axis.
- 2. Keeping edge $\overline{P_1P_5}$ in the Y-Z plane, the cube is rotated counterclockwise by 20° with respect to the Y-axis so that edge $\overline{P_1P_5}$ makes an angle of -20° with the positive Y-axis.

The cube is then translated so that corner P_1 is located at world coordinates $P'_1 = (0.00, 0.00, 1.00)$. An ideal pinhole camera with focal length f = 50 mm is used to image the cube at its new position.

- a) Find the world coordinates of the eight corners of the cube P_1' P_8' after the two rotations and the translation have been applied.
- b) Find image coordinates of the projections p_1' p_8' of the eight corners of the cube on the camera focal plane.
- c) Carefully sketch the image that is obtained on the camera focal plane.

NOTE: the pinhole camera coordinate system specified in the notes is a **LEFT-HANDED** coordinate system. For this assignment, you can't just copy formulas for the rotation matrices out of your physics book – those are for a **right-handed** coordinate system. For this assignment, you must explicitly consider the left-handed coordinate system and modify the rotation matrices appropriately.

DUE: 2/3/2010