
ECE 5273

HW 2 Solution

Spring 2010 Dr. Havlicek

Note: This document contains solutions in both Matlab and traditional C.

Analytical Portion of the Solution:

Initial world coordinates are specified for five out of the eight corners of the cube. From
these data, it is clear that, in units of meters, the initial world coordinates of all eight corners
are as shown in the table below.

Corner X Y Z

P1 0.00 0.00 0.00
P2 0.00 0.00 0.05
P3 0.05 0.00 0.05
P4 0.05 0.00 0.00
P5 0.00 0.05 0.00
P6 0.00 0.05 0.05
P7 0.05 0.05 0.05
P8 0.05 0.05 0.00

The first motion applied to the cube is a rotation by an angle of θ = 30◦ clockwise in the
X-Z plane. Note that this rotation does not change the Y world coordinate of any point on
the cube. Thus, to account for the rotation, we must update the X and Z world coordinates
of all eight corners.

Let P be an arbitrary one of the eight corners. Suppose that P initially has world
coordinates in the X-Z plane given by X0 and Z0. The initial position of P is depicted in
Fig. 1 below. In polar coordinates, the point P is located in the X-Z plane at an angle with
respect to the positive Z-axis of α = arctan X0

Z0
and a radius of R =

√
X2

0 + Z2
0 .

After the first rotation, the new world coordinates of the point P in the X-Z plane are
given by P ′ = (X1, Z1), as also shown in Fig. 1. In polar coordinates, the point P ′ is located in
the X-Z plane at an angle with respect to the positive Z-axis of α+θ = arctan X1

Z1
. The radius

of the point P ′ is the same as that of point P and is given by R =
√
X2

1 + Z2
1 =

√
X2

0 + Z2
0 .

The new coordinates X1, Z1 may be found by applying simple geometry. Details for
finding Z1 are shown in Fig. 2. Consider a new pair of axes X ′ and Z ′ that are rotated by
θ = 30◦ clockwise with respect to the original X and Z axes. These rotated axes are shown
in Fig. 2. With respect to the X ′ and Z ′ axes, the coordinates of point P ′ are X0 and Z0.

Note that Z1 = AB−BF . From triangle ABC, it is clear that the length of line segment
AB is given by Z0 cos θ. Now, triangles AED and HGC have all three corresponding pairs
of angles equal. These triangles are therefore similar. Moreover, AE and CH are opposite
sides of a rectangle and are therefore equal. This implies that AED and HGC are not only
similar; they are identical triangles. So BF = CG = DE = X0 sin θ. We have then that

Z1 = AB −BF = Z0 cos θ −X0 sin θ. (1)

1

0Z

1Z

X0 X1

α

θ

X

Z

P

P’

Figure 1: Geometry for the first rotation of the cube.

1Z

X1

Z’

P’

’X

0Z

X0

X

Z

θ

θ

θA

B C

F
G

H

D

E

Figure 2: Details for finding Z1.

2

1Z

X1

Z’

P’

’X

0Z

X0

X

Z

θ

θ

θ

A
B

G

F

E
D

C

Figure 3: Details for finding X1.

Details for finding X1 are shown in Fig. 3. Note that X1 = AB + BF . From triangle
ABG, we have that AB = X0 cos θ.

Now, triangles ACD and EFB have all three pairs of corresponding angles equal and
are therefore similar. Also, AC = FE, since they are opposite sides of a rectangle. Thus,
triangles ACD and EFB have all pairs of corresponding sides equal. In particular, BF =
CD = Z0 sin θ. We have then that

X1 = BF + AB = Z0 sin θ +X0 cos θ. (2)

Writing (1) and (2) together, we obtain the coordinate transformation

Z1 = Z0 cos θ −X0 sin θ, (3)
X1 = Z0 sin θ +X0 cos θ. (4)

Therefore, for each of the eight corners of the cube, the X and Z world coordinates can
be updated to account for the first rotation by applying (3) and (4) to the initial X-Z
coordinates of the corner.

The second motion applied to the cube is a rotation by an angle of ψ = 20◦ counterclock-
wise in the Y -Z plane. With respect to the positive Y -axis, this is a rotation clockwise by
ψ = −20◦. Note that this rotation does not change the X world coordinate of any point on
the cube. Thus, to account for the rotation, we must update the Y and Z world coordinates
of all eight corners.

Let P be an arbitrary one of the eight corners. Suppose that, prior to the second rotation,
P has world coordinates in the Y -Z plane given by Y0 and Z0. The position of P prior to the
second rotation is depicted in Fig. 4 below. In polar coordinates, the point P is located in
the Y -Z plane at an angle with respect to the positive Y -axis of β = arctan Z0

Y0
and a radius

of R =
√
Z2

0 + Y 2
0 .

3

P

P’

0

1

0 1

Y

Z
ZZ

Y

Y

ψ

β

Figure 4: Geometry for the second rotation of the cube.

After the second rotation, the new world coordinates of the point P in the Y -Z plane
are given by P ′ = (Y1, Z1), as shown in Fig. 4. Applying arguments identical to those used
for finding Z1 and X1 in the first rotation above, we obtain the coordinate transformation

Y1 = Y0 cosψ − Z0 sinψ, (5)
Z1 = Y0 sinψ + Z0 cosψ. (6)

Therefore, for each of the eight corners of the cube, the Y and Z world coordinates can be
updated to account for the second rotation by applying (5) and (6) to the Y -Z coordinates
obtained after the first rotation.

The final motion of the cube is a translation of 1.00 meters in the direction of the positive
Z-axis. For each corner, this motion is accounted for by adding 1.00 to the Z-coordinate
obtained after the second rotation.

Once the final coordinates are known for each of the eight corners, the projection equa-
tions for the pinhole camera model can be used to project the eight corners onto the image
plane. The camera image is then obtained by projecting straight lines in the real world (the
cube edges) to straight lines on the focal plane. This forms a closed polygon where some
edges are occluded (hidden).

4

Matlab Solution:

• Image (numerical values of the coordinates are given in the C solution):

−1 0 1 2 3 4

x 10−3

−1

0

1

2

3

4
x 10−3

Figure 5: Image of the cube that is obtained on the camera focal plane.

• Matlab m-file listing:

%

% hw02.m

%

% 02/06/03 jph

%

% 03/06/05: corrected error in calculation of xx and yy.

%

%

% Initialize the world coordinates of the eight cube corners

%

P(1).X = 0.00; P(1).Y = 0.00; P(1).Z = 0.00;

P(2).X = 0.00; P(2).Y = 0.00; P(2).Z = 0.05;

P(3).X = 0.05; P(3).Y = 0.00; P(3).Z = 0.05;

P(4).X = 0.05; P(4).Y = 0.00; P(4).Z = 0.00;

P(5).X = 0.00; P(5).Y = 0.05; P(5).Z = 0.00;

P(6).X = 0.00; P(6).Y = 0.05; P(6).Z = 0.05;

P(7).X = 0.05; P(7).Y = 0.05; P(7).Z = 0.05;

P(8).X = 0.05; P(8).Y = 0.05; P(8).Z = 0.00;

%

% First rotation - update X & Z coordinates of all eight points

%

Theta = 30.0 * 2.0 * pi / 360.0;

for i=1:8

Zold = P(i).Z;

Xold = P(i).X;

P(i).Z = cos(Theta) * Zold - sin(Theta) * Xold;

P(i).X = sin(Theta) * Zold + cos(Theta) * Xold;

end

%

5

% Second rotation - update Y & Z coordinates of all eight points

%

Theta = -20.0 * 2.0 * pi / 360.0;

for i=1:8

Yold = P(i).Y;

Zold = P(i).Z;

P(i).Y = cos(Theta) * Yold - sin(Theta) * Zold;

P(i).Z = sin(Theta) * Yold + cos(Theta) * Zold;

end

%

% Translation - update Z coordinates of all eight points

%

for i=1:8

P(i).Z = P(i).Z + 1.0;

end

%

% Project all eight points into the image plane

%

f = 0.05;

for i=1:8

P(i).x = f/P(i).Z * P(i).X;

P(i).y = f/P(i).Z * P(i).Y;

P(i).z = 0.0;

end

%

% plot the resulting image

%

order = [1 5 6 7 3 4]; % this ordering enables ’fill’ to deal

% with the occluded edges

xx = zeros(6,1);

yy = zeros(6,1);

for i=1:6

xx(i) = P(order(i)).x;

yy(i) = P(order(i)).y;

end

fill(xx,yy,[0 0 0]);

axis([-0.001 0.004 -0.001 0.004],’equal’);

print -deps ML02.eps

print -dtiff ML02.tif

print -dps ML02.ps

6

C Solution:

• Images:

−0.001 0 0.001 0.002 0.003 0.004
−0.001

0

0.001

0.002

0.003

0.004

(a) (b)

Figure 6: (a) Projections of the eight cube corners on the focal plane. (b) Image of the cube
that is obtained on the camera focal plane.

• Coordinates of the points after each step:

After First Rotation:

P1: X= 0.00000 Y= 0.00000 Z= 0.00000

P2: X= 0.02500 Y= 0.00000 Z= 0.04330

P3: X= 0.06830 Y= 0.00000 Z= 0.01830

P4: X= 0.04330 Y= 0.00000 Z= -0.02500

P5: X= 0.00000 Y= 0.05000 Z= 0.00000

P6: X= 0.02500 Y= 0.05000 Z= 0.04330

P7: X= 0.06830 Y= 0.05000 Z= 0.01830

P8: X= 0.04330 Y= 0.05000 Z= -0.02500

After Second Rotation:

P1: X= 0.00000 Y= 0.00000 Z= 0.00000

P2: X= 0.02500 Y= 0.01481 Z= 0.04069

P3: X= 0.06830 Y= 0.00626 Z= 0.01720

P4: X= 0.04330 Y= -0.00855 Z= -0.02349

P5: X= 0.00000 Y= 0.04698 Z= -0.01710

P6: X= 0.02500 Y= 0.06179 Z= 0.02359

P7: X= 0.06830 Y= 0.05324 Z= 0.00010

P8: X= 0.04330 Y= 0.03843 Z= -0.04059

After Translation:

P1: X= 0.00000 Y= 0.00000 Z= 1.00000

P2: X= 0.02500 Y= 0.01481 Z= 1.04069

P3: X= 0.06830 Y= 0.00626 Z= 1.01720

P4: X= 0.04330 Y= -0.00855 Z= 0.97651

P5: X= 0.00000 Y= 0.04698 Z= 0.98290

P6: X= 0.02500 Y= 0.06179 Z= 1.02359

7

P7: X= 0.06830 Y= 0.05324 Z= 1.00010

P8: X= 0.04330 Y= 0.03843 Z= 0.95941

In the Image Plane:

P1: x= 0.00000 y= 0.00000

P2: x= 0.00120 y= 0.00071

P3: x= 0.00336 y= 0.00031

P4: x= 0.00222 y= -0.00044

P5: x= 0.00000 y= 0.00239

P6: x= 0.00122 y= 0.00302

P7: x= 0.00341 y= 0.00266

P8: x= 0.00226 y= 0.00200

• C program listing:

/*

* hw02-2.c:

*

* For a cube specified in three-space by the coordinates of its vertices,

* perform two rotations and one tanslation. Then project the cube into

* the image plane.

*

* Print out intermediate answers for grading

*

* 2/15/2002 jph

*

*/

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <string.h>

/*

* Type for a point in upright pinhole camera model (NOTES p. 1.17)

*/

struct point {

float X; /* X-coordinate in the real world */

float Y; /* Y-coordinate in the real world */

float Z; /* Z-coordinate in the real world */

float x; /* x-coordinate in the image plane */

float y; /* y-coordinate in the image plane */

};

typedef struct point point;

typedef point *Ppoint;

/*--*/

/* MAIN */

/*--*/

main(argc,argv)

int argc;

char *argv[];

{

int i; /* loop counter */

point P[8]; /* array of cube corners */

float f; /* camera focal length in meters */

8

double Theta; /* rotation angle */

double Xold; /* old X coordinate of a point */

double Yold; /* old Y coordinate of a point */

double Zold; /* old Z coordinate of a point */

/*

* Initialize the world coordinates of the eight cube corners

*/

P[0].X = 0.00; P[0].Y = 0.00; P[0].Z = 0.00;

P[1].X = 0.00; P[1].Y = 0.00; P[1].Z = 0.05;

P[2].X = 0.05; P[2].Y = 0.00; P[2].Z = 0.05;

P[3].X = 0.05; P[3].Y = 0.00; P[3].Z = 0.00;

P[4].X = 0.00; P[4].Y = 0.05; P[4].Z = 0.00;

P[5].X = 0.00; P[5].Y = 0.05; P[5].Z = 0.05;

P[6].X = 0.05; P[6].Y = 0.05; P[6].Z = 0.05;

P[7].X = 0.05; P[7].Y = 0.05; P[7].Z = 0.00;

/*

* First rotation - update X & Z coordinates of all eight points

*/

Theta = (double)30.0 * (double)2.0 * M_PI / (double)360.0;

for (i=0; i < 8; i++) {

Zold = (double)P[i].Z;

Xold = (double)P[i].X;

P[i].Z = (float)(cos(Theta)*Zold - sin(Theta)*Xold);

P[i].X = (float)(sin(Theta)*Zold + cos(Theta)*Xold);

}

/*

* Report

*/

printf("\nAfter First Rotation:\n");

for (i=0; i < 8; i++) {

printf("P%d: X=%9.5f Y=%9.5f Z=%9.5f\n",

i+1,P[i].X,P[i].Y,P[i].Z);

}

printf("\n\n");

/*

* Second rotation - update Y & Z coordinates of all eight points

*/

Theta = (double)-20.0 * (double)2.0 * M_PI / (double)360.0;

for (i=0; i < 8; i++) {

Yold = (double)P[i].Y;

Zold = (double)P[i].Z;

P[i].Y = (float)(cos(Theta)*Yold - sin(Theta)*Zold);

P[i].Z = (float)(sin(Theta)*Yold + cos(Theta)*Zold);

}

/*

* Report

*/

printf("\nAfter Second Rotation:\n");

for (i=0; i < 8; i++) {

printf("P%d: X=%9.5f Y=%9.5f Z=%9.5f\n",

i+1,P[i].X,P[i].Y,P[i].Z);

}

printf("\n\n");

/*

* Translation: update Z coordinates of all eight points

*/

for (i=0; i < 8; i++) {

P[i].Z += (float)1.0;

9

}

/*

* Report

*/

printf("\nAfter Translation:\n");

for (i=0; i < 8; i++) {

printf("P%d: X=%9.5f Y=%9.5f Z=%9.5f\n",

i+1,P[i].X,P[i].Y,P[i].Z);

}

printf("\n\n");

/*

* Project all eight points into the image plane

*/

f = (float)0.05;

for (i=0; i < 8; i++) {

if (P[i].Z == (float)0.0) {

printf("\nError: point %d has Z=0.0\n\n",i);

exit(-1);

} else {

P[i].x = f/P[i].Z * P[i].X;

P[i].y = f/P[i].Z * P[i].Y;

}

}

/*

* Report

*/

printf("\n\n");

for (i=0; i < 8; i++) {

printf("P%d: x=%9.5f y=%9.5f\n",i+1,P[i].x,P[i].y);

}

printf("\n\n");

return;

} /*---------------- Main --*/

10

