1. Obtain the image “Mammogram.bin” from the course web site. This image has 256 × 256 pixels. Each pixel has 8 bits. **Note:** the server is Unix; the filename is case sensitive. Do not make the mistake of getting the incorrect 512 × 512 file “mammogram.bin.”

 (a) There are two main regions in the input image: the imaged tissue and the dark background region on the left side of the image. Write a program to convert this gray scale image into a binary image by simple thresholding. In the binary image, use a value of 255 = 0xff for logical one and a value of 0 = 0x00 for logical zero. Select the threshold so that the binary image is equal to logical zero over the background region and logical one over the tissue.

 (b) Write a program to implement the **Approximate Contour Image Generation** algorithm given on page 2.104 of the notes. Your program should input the binary image and output a binary contour image. Run your program to generate an approximate contour image from the binary image you obtained by thresholding Mammogram.bin.

 (c) Could a chain code be used to represent the main contour in your contour image? Why or why not?

2. Obtain the image “lady.256” from the course web site. This is a 256 × 256 gray scale image with 8-bit pixels. Plot a histogram for the image. Write a program to perform a full-scale contrast stretch on the image and plot a histogram for the result.

3. Obtain the image “actontBin.bin” from the course web site. This image has 256 × 256 pixels with 8 bits each. It is a true binary image; the pixel value 255 represents logical one and the pixel value 0 represents logical zero.

 Write a program to find instances of the letter “T” in the image using the **Binary Template Matching** algorithm given on pages 2.92 - 2.97 of the notes. You will have to design the template yourself based on an analysis of the image. Apply the match measure M_2 at every pixel in the input image where a sufficiently large neighborhood exists. Construct an output image J_1 where each pixel is equal to the match measure M_2 (set J_1 equal to zero at pixels where a sufficiently large neighborhood does not exist in the input image).

 Threshold the image J_1 to obtain a binary image J_2 that should be equal to logical one at pixels where there is a high probability that the letter “T” is present in the input image.

4. Obtain the image “johnny.bin” from the course web site. This image has 256 × 256 pixels. Each pixel has 8 bits. Plot the histogram of the original image. Write a program to perform histogram equalization on this image. Show the equalized image and plot its histogram.

Be sure to turn in: program listings, printouts of all original, intermediate, and output images, histogram plots.

DUE: 2/13/2020