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Homework 5

Spring 2025 Dr. Havlicek

1. Obtain the image salesman.bin from the course web site. This is a 256×256 grayscale

image with 8-bit pixels. In this problem you will use three different methods to apply

a 7× 7 linear low-pass average filter to the image. The resulting filtered images should

be exactly the same in all three cases.

The filter impulse response is a 7×7 square where each pixel is equal to 1/49. In terms

of the notation on page 2.54 of the course notes, the filter window is SQUARE(49).

The reference point is located in the center, so that the output image is not shifted

relative to the input image.

Note: this is a linear translation invariant (LTI) filter. The output is linear convolu-

tion, not circular convolution.

(a) Implement the 7×7 linear average filter using image domain convolution. Set each

pixel in the output image equal to the average of the pixels in a 7×7 neighborhood

about the corresponding pixel in the input image. Handle edge effects by zero

padding (i.e., use a value of zero for pixels where the window “hangs over” the

edges of the input image). Show the input and output images with full scale

contrast.

Note: to obtain agreement with the DFT filtering methods that you will im-

plement in parts (b) and (c), you need to apply the filter at every pixel of the

input image. At all four edges of the image, this creates an issue about how to

implement the zero padding. One way to handle the issue is to treat the first three

rows, the last three rows, the first three columns, and the last three columns as

special cases. An alternative way that is probably easier is the following: add

three rows of all zero pixels to the top and bottom of the image and add three

columns of all zero pixels to the left and right sides of the image. Then you will

have a new image of size 262 × 262. You can then apply the filter to this new

enlarged image starting at pixel (4,4) (for Matlab indexing; for C indexing it is

pixel (3,3)) and ending at pixel (259,259) (for Matlab indexing; for C indexing it

is pixel (258,258)).

(b) Implement the same filter by pointwise multiplication of DFT’s using the method

of Example 3 on pages 5.61-5.62 of the course notes. In this case, your impulse

response image H will be of size 128 × 128 and will have all pixels equal to zero

except for a 7× 7 square of pixels in the center that will all be equal to 1/49. As

in Example 3, we have (p0, q0) = (64, 64), which is Matlab (row, col) = (r, s) =

(65, 65). This means that the center of the square (the reference point shown in



green on page 2.54 of the course notes) will be for (m,n) = (0, 0) and should be

located at (p, q) = (64, 64) in the H image (which is again (r, s) = (65, 65) in

Matlab).

Note: according to Example 3 on pages 5.61-5.62 of the course notes, the zero-

padded size should be 383 × 383 (since 256 + 128 - 1 = 383). If you are using C

and the FFT routine fft2d() from the course web site, this will cause a problem

because fft2d() assumes that the size is even. To solve this problem, increase

the zero-padded size by one to 384 × 384.

Show the following images with full scale contrast:

• The original input image.

• The zero padded original image.

• The zero padded impulse response image.

• The centered DFT log-magnitude spectrum of the zero padded input image.

• The centered DFT log-magnitude spectrum of the zero padded impulse re-

sponse image.

• The centered DFT log-magnitude spectrum of the zero padded output image.

• The zero padded output image.

• The final 256× 256 output image.

Verify that the output image (obtained after performing a full-scale contrast

stretch and rounding each pixel to the nearest integer) is the same as the one

in part (a). In Matlab, if the output image from part (a) is in the array Y1a and

the output image from this part is in the array Y1b, then you can do this using

the Matlab statement

disp([’(b): max difference from part (a): ’ num2str(max(max(abs(Y1b-Y1a))))])

(c) Implement the same filter again using the zero-phase impulse response and DFT

method of Example 5 on page 5.76 of the course notes. This method is explained

on pages 5.66-5.75. As in Example 5, use a size of 256 × 256 for the impulse

response image H. Your solution should be almost the same as the Matlab code

in Example 5, except that you will replace the Gaussian impulse response in lines

3 and 4 with a 7× 7 square of pixels that are equal to 1/49.

To do this in Matlab, initialize the original non-zero-phase impulse response (h in

Example 5) to all zeros and then set elements (126:132, 126:132) equal to 1/49.

This will give you a 7× 7 square of pixels with value 1/49 centered at (p0, q0) =

(128, 128), which is Matlab (row, col) = (r, s) = (129, 129). Then use the Matlab

fftshift function to obtain the zero-phase impulse response image exactly as

in Example 5. If you are using C or some other language then you will need

to program the equivalent operations yourself, but you can still use the example

Matlab code on page 5.76 as a guideline.



Show the following images with full scale contrast:

• The original input image.

• The 256× 256 zero-phase impulse response image (this is h2 in Example 5).

• The 512 × 512 zero padded zero-phase impulse response image (this is h2ZP

in Example 5).

• The final 256× 256 output image.

Verify that the output image (obtained after performing a full-scale contrast

stretch and rounding each pixel to the nearest integer) is the same as the one

in part (a).

2. Obtain the images girl2.bin, girl2Noise32Hi.bin, and girl2Noise32.bin from

the course web site. All three are 256× 256 grayscale images with 8-bit pixels.

• girl2.bin is the original image, also known as Tiffany.

• girl2Noise32Hi.bin has hi-pass Gaussian white noise added. The DFT of the

noise is nonzero for
√
u2 + v2 > 64 cpi and zero for

√
u2 + v2 ≤ 64.

• girl2Noise32.bin has broadband Gaussian white noise added.

(a) Read and display all three images. Compute the MSE of girl2Noise32Hi and

girl2Noise32 relative to girl2 using the formula given on page 5.114 of the

course notes.

(b) Apply an isotropic ideal low-pass filter as on page 5.111 of the course notes with

Ucutoff = 64 cpi to all three images. Since the cutoff frequency of the hi-pass

noise is known exactly in this case, it is best to implement the filter using circular

convolution in order to avoid the edge effects associated with zero padding and

linear convolution. Therefore, for all three images, use the formula on page 5.111

of the notes to make a 256×256 H̃ DFT array. In Matlab, you can do it like this:

U_cutoff = 64;

[U,V] = meshgrid(-128:127,-128:127);

HLtildeCenter = double(sqrt(U.^2 + V.^2) <= U_cutoff);

HLtilde = fftshift(HLtildeCenter);

Then, simply pointwise multiply this H̃ array times the 256× 256 DFT array of

each image to obtain the three filtered images.

Display each filtered image and compute the MSE (relative to the original girl2

image) using the formula on page 5.114 of the course notes. For the two noisy

images, also compute the ISNR using the formula on page 5.115 of the course

notes. You should display the images with full scale contrast. However, for

computing the MSE and ISNR, it is important to use the floating point images

obtained directly from the inverse DFT without rounding and without applying

any full scale contrast stretch.



You should find that this ideal LPF is very effective for removing the hi-pass noise

in girl2Noise32Hi. However, it will introduce ringing artifacts in the original

image girl2 and it will not work as well on the broadband noise in girl2Noise32.

Note: if you are using C, and if you are using the routine fft2d() from the

course web site, then you may run into an issue here in Problem 2(b) (if you

are using Matlab, then you can ignore this paragraph). The reason you may run

into an issue is that fft2d() is designed to input and output centered DFT’s.

On a forward transform, it performs an fftshift operation after calling the 2D

FFT. On a reverse transform, it performs an fftshift before calling the 2D FFT.

Now, for doing DFT domain filtering, it does not really matter if you are using

centered DFT’s or un-centered DFT’s, as long as you use fft2d() to compute

both transforms: the transform of the input image and the transform of the filter.

However, if, as we are doing here in Problem 2(b), you are only going to use

fft2d() for one of the transforms, then you have to be careful! Here in Problem

2(b), you are going to compute the H̃ image yourself without calling fft2d().

So, if you are going to call fft2d() for the DFT of the input images, then realize

that they will be centered DFT’s. This means that you must also compute the

H̃ image as a centered DFT. Otherwise, you will get the wrong answer when

you multiply the two DFT’s pointwise. That is a difference between using C and

fft2d() as compared to the Matlab code shown above.

(c) Apply the Gaussian low-pass filter on page 5.113 of the course notes to all three

images with Ucutoff = 64. Use the bottom formula with N = 256 and Ucutoff = 64

to design the space constant σ. Then use the top formula to make a 256× 256 H̃

DFT array. Apply fftshift to “un-center” this DFT array and invert to obtain

the 256× 256 zero phase impulse response (as explained in the note for part (b),

if you are using C and fft2d() then you do not have to un-center the DFT array

before inverting). Apply fftshift again to the zero phase impulse response to

center it. Then use the method of Example 4 on pages 5.64 and 5.65 of the course

notes to obtain the three filtered images.

Here is an example of how to use Matlab to compute the 512× 512 zero padded

impulse response image:

U_cutoff_H = 64;

SigmaH = 0.19 * 256 / U_cutoff_H;

[U,V] = meshgrid(-128:127,-128:127);

HtildeCenter = exp((-2*pi^2*SigmaH^2)/(256.^2)*(U.^2 + V.^2));

Htilde = fftshift(HtildeCenter);

H = ifft2(Htilde);

H2 = fftshift(H);

ZPH2 = zeros(512,512);

ZPH2(1:256,1:256) = H2;



You can then take the 512× 512 DFT of ZPH2 and multiply it pointwise with the

DFT’s of the 512× 512 zero padded images to obtain the DFT’s of the three zero

padded filtered images.

Display each 256 × 256 filtered image and compute the MSE using the formula

on page 5.114 of the course notes. For the two noisy images, also compute the

ISNR using the formula on page 5.115 of the course notes. As in part (b), for

computing the MSE and ISNR it is important to use the floating point images

obtained directly from the inverse DFT without rounding and without applying

any full scale contrast stretch.

Compared to the ideal LPF, you should find that this filter produces a much

better MSE on the original image since it does not suffer from ringing artifacts.

However, this filter will not perform as well as the ideal LPF on the noisy images.

(d) Use the method of Example 4 on pages 5.64 and 5.65 of the course notes to apply

the Gaussian low-pass filter on page 5.113 of the course notes to all three images

again, this time with Ucutoff = 77.5.

Display each 256 × 256 filtered image and compute the MSE using the formula

on page 5.114 of the course notes. For the two noisy images, also compute the

ISNR using the formula on page 5.115 of the course notes. As in part (b), for

computing the MSE and ISNR it is important to use the floating point images

obtained directly from the inverse DFT without rounding and without applying

any full scale contrast stretch.

You should find that this filter distorts the original image much less than the other

two filters. Overall, this filter will perform better than the other two against the

broadband noise in girl2Noise32.
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