The problem with the filter tessellation on p. 76 is that between filters, there are places where no filter is at a peak. Find a denser tessellation where at least one filter is at a peak or higher at every point in the plane.

For this tessellation, the ratio $\frac{\theta_m}{\theta_n}$ is not specified... and the angular spacing θ is then found to produce the desired five-filter 2-peak intersection. Hence, the radial center frequencies along a ray follow a geometric progression with a specified common ratio. We call the common ratio "$R".
Hence \(R_{n+1} = R R_n \)

Let \(\alpha = \frac{\theta}{2} \).

Note: \(R_{n+1} = \frac{2^{\theta+1}}{2^{\theta-1}} \frac{\sqrt{2 \alpha n}}{2 \pi R_{n+1}} = \frac{2^{\theta+1} \sqrt{2 \alpha n}}{2^{\theta-1} 2 \pi R_{n+1}} \)

Let \(\alpha = R_{n+1} - R_n = R_n (R-1) \)

\[\begin{align*}
\overrightarrow{BC} &= R_{n+1} - R_n = R_n (R-1) \\
\overrightarrow{BA} &= \frac{\sqrt{2 \alpha n}}{2 \pi R} = \frac{2^{\theta-1}}{2^{\theta+1}} R_n \\
\overrightarrow{CA} &= \frac{2^{\theta-1}}{2^{\theta+1}} (R_n) = \frac{2^{\theta-1}}{2^{\theta+1}} R R_n
\end{align*} \]

Let \(Y = \frac{(2^{\theta} - 1)^2}{(2^{\theta+1})^2} \) \quad \text{Let} \quad \beta = \angle CAB \)

Law of Cosines for \(\angle CAB \):

\[\begin{align*}
R_n^2 (R-1)^2 &= Y R_n^2 + Y R^2 R_n^2 - 2 Y R R_n^2 \cos \beta \\
(R-1)^2 &= Y + Y R^2 - 2 Y R \cos \beta \\
2 Y R \cos \beta &= Y R^2 + Y - (R-1)^2 = Y R^2 - R^2 + 2 R - 1 + Y \\
2 Y R \cos \beta &= (Y-1)(R^2 + 1) + 2 R \\
\cos \beta &= \frac{(Y-1)(R^2 + 1) + 2 R}{2 Y R} \\
\beta &= \arccos \left(\frac{(Y-1)(R^2 + 1) + 2 R}{2 Y R} \right)
\end{align*} \]

Now \(\beta + \angle BAE = 180^\circ \Rightarrow \angle BAE = 180^\circ - \beta \Rightarrow \frac{\angle BAE}{2} = \frac{90^\circ}{2} = 45^\circ \cdot \frac{\theta}{2} \)

Also, \(\overrightarrow{BC} = R_n \sin \alpha = R_n \sin \frac{\theta}{2} = \overrightarrow{BA} \sin \frac{\alpha}{2} = \overrightarrow{BA} \sin \left(90^\circ - \frac{\theta}{2}\right) = \overrightarrow{BA} \cos \frac{\theta}{2} \)

\[\begin{align*}
\sin \frac{\theta}{2} &= \overrightarrow{BA} \cos \frac{\theta}{2} \\
\Rightarrow \quad \sin \frac{\theta}{2} &= \overrightarrow{BA} \cos \frac{\theta}{2}
\end{align*} \]
Now \(B = \text{Quad I or Quad II}, \quad \Theta = \text{Quad I.} \)

So \(\frac{B}{2} \in \text{Quad I} \) and \(\frac{\Theta}{2} \in \text{Quad I}. \)

\[\cos \frac{B}{2} = -\sqrt{\frac{1}{2} + \frac{1}{2} \cos B} \]

\[\Rightarrow \frac{r_m \sin \frac{\Theta}{2}}{2} = \sqrt[3]{r_m \cos \frac{B}{2}} \]

\[\sin \frac{\Theta}{2} = \sqrt{- \frac{1}{2} + \frac{1}{2} \cos B} = \sqrt{- \frac{1}{2} \left(1 + \cos B \right)} \]

\[= \left[\frac{1}{2} \left(1 + \frac{(y-1)(R^2+1) + 2R}{2Ry} \right) \right]^{1/2} \]

\[= \left[\frac{y + (y-1)(R^2+1) + 2R}{4R} \right]^{1/2} = \left[\frac{2Ry + (y-1)(R^2+1) + 2R}{4R} \right]^{1/2} \]

\[= \left[\frac{(R^2+1)(y-1) + 2R(y+1)}{4R} \right]^{1/2} \]

\[= \left[4R \right]^{-1/2} \left[(R^2+1)(y-1) + 2R(y+1) \right]^{1/2} \]

\[\Theta = 2 \arcsin \left\{ \left[4R \right]^{-1/2} \left[(R^2+1)(y-1) + 2R(y+1) \right]^{1/2} \right\} \]

\[r = 1.8 \quad B = 1 \quad \eta = \frac{1}{2} \quad \Rightarrow \quad \Theta = 20.6418^\circ \]

\[r = 1.7 \quad B = 1 \quad \eta = \frac{1}{2} \quad \Rightarrow \quad \Theta = 25.0576^\circ \]
Design of Filterbank

\[N_f = \text{number filters per ray.} \]

I will put the maximum radial center frequency as close to 0.5 cycles/sample as I can without exceeding it...

Although it would be possible to put more filters on rays with orientation \(\approx \pi/4 \), I prefer to have the same \(N_f \) of filters on every ray.

The first filter on the ray has radial center frequency \(R_0 \).

The radial center frequency of the \(N_f \text{th} \) filter is

\[R_{N_f} = R_0^{N_f} \quad \text{if} \quad R_0 < 1/2 \text{ cycle/pixel} \]

\[-\log_2 R > N_f - 1 + \log_2 R_0 \]

\[\ln R \cdot \frac{\ln 2}{\ln R} \rightarrow N_f - 1 + \frac{\ln R_0}{\ln R} \]

\[-\frac{\ln R_0 - \ln 2}{\ln R} > N_f - 1 \]

\[+\frac{\ln R_0 - \ln 2}{\ln R} + 1 > N_f - 1 \]

\[N_f = 1 \cdot \frac{\ln R_0 - \ln 2}{\ln R} + 1 \]

\[N_f = \left[\frac{\ln R_0 - \ln 2}{\ln R} \right] + 1 \]

\(R_0 \) is in cycles/pixel.

Check: \(N_f = 5 \) valid.
\(Nr = \) number of rays in half-plane

I rename \(\theta' \) on page 78, the angular spacing between the rays, \(\Lambda' \):

\[
\Lambda' = 2 \arcsin \left(\frac{\sqrt{[4R^2 - \frac{1}{2} \left(R^2 + 1 \right)(y - 1) + 2R(y + 1)^2]} + \sqrt{2}}{2} \right)
\]

\[
Y = \frac{(y - 1)^2}{(2y + 1)^2}
\]

\[
N_r = \left\lfloor \frac{\pi}{\Lambda'} \right\rfloor
\]

check: \(\Lambda' = 20.6416^\circ = 3.60257 \times 10^{-3} \text{ rad} \)

\(\Rightarrow \) \(Nr = 3 \) ✓

\(N_T = \) Total Number Filters in Filterbank = \(Nr \times N_r \).

Number the filters \(\phi = N_T - 1 \).

Filter \(m \) is on ray \(L_{\frac{m}{N_r}} \).

It is the \(m \mod N_r \) filter on that ray.

\[
\phi_m = \frac{\pi R^{\frac{1}{2}} - \frac{\pi}{2} L_{\frac{m}{N_r}}} {N_r} \text{ radians} = \text{angle (orientation)} \text{ of } m^{th} \text{ filter}
\]

\[
\phi_m + \frac{\pi}{2} L_{\frac{m}{N_r}} = \frac{\pi}{2} \text{ radians}
\]

\(\phi_m = \text{radial center frequency of } m^{th} \text{ filter} = \frac{R^{\frac{1}{2}}}{N_r} \text{ cycles/sample} \)

\(\phi_m = \cos \phi_m \text{ cycles/sample} \)

\(\phi_m = \text{horizontal center frequency of } m^{th} \text{ filter} = \phi_m \sin \phi_m \text{ cycles/sample} \)

\(\phi_m = \text{vertical center frequency of } m^{th} \text{ filter} \)
8/14/94... Finally, I correct the Postfilter design on p. 67 for the new σ in convention:

\[P_{R}(x,y) = A \exp \left[\frac{-1}{4\sigma^2} (x^2 + y^2) \right] \]

\[
\iint_{R} P_{R}(x,y) \, dx \, dy = 1 \Rightarrow \int_{R} \int_{R} P_{R}(x,y) \, dx \, dy = 1
\]

\[
= A \int_{R} \exp \left[\frac{-1}{4\sigma^2} (x^2 + y^2) \right] dx \, dy
\]

\[
= A \int_{R} \exp \left[\frac{-1}{4\sigma^2} x^2 \right] dx \int_{R} \exp \left[\frac{-1}{4\sigma^2} y^2 \right] dy
\]

\[
= A \left[\int_{R} \exp \left[\frac{-1}{4\sigma^2} x^2 \right] dx \right]^2 = A \frac{\pi \sigma^2}{\pi \sigma^2}
\]

\[
A = \frac{1}{\pi \sigma^2}
\]

\[P_{R}(x,y) = \frac{1}{\pi \sigma^2} \exp \left[\frac{-1}{4\sigma^2} (x^2 + y^2) \right] \]

Let the postfilter sigma scaling factor be \(\kappa \).

the \(\kappa \)th postfilter has \(\sigma = \kappa \sigma_0 \)

\[P_{R}(x,y) = \frac{1}{\pi \sigma_0^2} \exp \left[\frac{-1}{4\sigma_0^2} (x^2 + y^2) \right] \]

Now I am ready... to summarize the entire filterbank design...
NEW FILTERBANK DESIGN

\[R = \text{radial center freq of } l^{th} \text{ filter on each ray} \quad \text{cycles/pixel} \]
\[R = \text{common ratio of filter radial center frequencies (dimensionless)} \]
\[B = \text{radial octave bandwidth of filter in octaves} \]
\[\gamma = \text{fraction of peak response defining bandwidth } B \quad \text{dimensionless} \]
\[\mu = \text{postfilter frequency constant scaling factor (dimensionless)} \]

\[N_f = \text{number of filters} = \left[\frac{-\ln(2\gamma)}{2\ln R} \right] + 1 \]
\[\theta^* = 2\arctan \sqrt{y} \]
\[y = \frac{(2^\gamma - 1)^2}{(2^\gamma + 1)^2} \]
\[\Delta = \text{angular spacing between rays} = 2\arcsin \left[\frac{(4R^2 + 3(R^2 + 1)y - 1) + 2R(1+y)\gamma^2}{1 - \gamma^2} \right] \]

\[N_r = \text{num rays} = \left\lfloor \frac{\pi}{\Delta} \right\rfloor \]
\[N_r = \text{Tot Num filters} = N_f \cdot N_r \]

Filter \(m \) is on ray \(\frac{l}{N_r} \).

It is the \((m \mod N_r)\) th filter on this ray.

\[\Theta_m = \frac{2\pi}{N_r} \left[m + \frac{1}{2} \right] \text{ radians} \]
\[\tau_m = R \left(m \mod N_r \right) \quad \text{cycles/pixel} \]
\[\nu_m = \tau_m \cos \Theta_m \quad \text{cycle/pixel} \]
\[\nu_m = \tau_m \sin \Theta_m \quad \text{cycle/pixel} \]
NEW FILTERBANK DESIGN CONT.

\[O_m = \frac{\sqrt{\beta}}{2\pi r_m \sqrt{\gamma}} \]

\[g_m(x, y) = \frac{1}{\sqrt{2\pi} \sigma_m} \exp \left[-\frac{1}{2} \left(x^2 + y^2 \right) \right] \exp \left[\pm i 2\pi m(x - u_m + \nu_m) \right] \]

\[c_m(u, v) = 2\sqrt{2\pi} \sigma_m \exp \left[-\frac{4\sigma_m^2 \pi^2}{2} \left(u^2 + v^2 \right) \right] \]

\[\theta_m = \arctan \left(\frac{v}{u} \right) \]

\[\sigma_m(x, y) = \frac{1}{\sqrt{2\pi} \sigma_m} \exp \left[-\frac{1}{4\sigma_m^2 \pi^2} \left(x^2 + y^2 \right) \right] \]

Example: 256 x 256:

\[c_m = 9.6 \text{ CPI} = 0.0375 \text{ cycles/pix} \]

\[R = 1.8 \]

\[B = 1.0 \]

\[\eta = 0.5 \]

\[K = 1.25 \]

\[N_T = 5 \]

\[\gamma = \frac{1}{9} \]

\[\Lambda = 20.6418^\circ \]

\[N_T = 8 \]

\[N_T = 40 \]

\[\theta = 38.9424^\circ \]
\(v_b = 3.6 \text{ cm/s} \)
\(R = 1.8 \)
\(B = 1.0 \)
\(\theta = 45^\circ \)

Made by PH.