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Synopsis 

This work investigates the two- and three-dimensional description of fiber ori- 
entation in homogeneous flow fields. Motion of the fibers is described using the 
Dinh-Armstrong model which was developed for semiconcentrated fiber suspen- 
sions. The calculation of rheological properties for fiber suspensions requires the 
determination of fourth-order moments of orientation distribution function which 
is defined as the fourth-order orientation tensor. Solution of the distribution 
function is obtamed in terms of the velocity gradients and transient calculations 
are presented for simple shear, planar elongational, and uniaxial extensional 
flows. Second- and fourth-order tensors are calculated by using the distribution 
function and the components of the second-order tensor are utilized to define an 
orientation ellipsoid for the graphical representation of the orientation state. 
The fourth-order tensor is approximated from second-order tensors through qua- 
dratic and hybrid closure equations, and compared with the exact results. De- 
spite the qualitative agreement between the exact and approximated results, 
considerable quantitative discrepancy is observed which may result in inaccu- 
rate prediction of suspension behavior. 

INTRODUCTION 

The characterization of the flow or the fiber orientation in a 
short fiber suspension is a major concern in current polymer pro- 
cessing research. Short fiber suspensions are commonly used in 
such manufacturing techniques as extrusion, injection, and com- 
pression molding. During these processes, fibers being affected 
by the flow regime inside the mold, form a flow-induced orienta- 
tion state leading to an anisotropic product. In order to perform 
a proper design, the description of the anisotropy and the ways 
to control it must be well understood. 

Several studies have characterized the orientation state in fi- 
ber suspension systems. Jeffery’s’ early work on the motion of an 
ellipsoid in a viscous Newtonian fluid was used by Givler et al.,’ 
and a computer code was developed to predict the orientation 
angle in dilute suspensions in confined geometries. 
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The last decade has seen additional activity in the develop- 
ment of reliable models to characterize the behavior of nondilute 
fiber suspensions. Folgar and Tucker3 have proposed a phe- 
nomenological model which incorporates the effects of the inter- 
action among rigid fibers. In this model the description of fiber 
orientation is described by using an orientation distribution 
function. Later, Advani and Tucker4 used orientation tensors to 
describe the orientation. 

Dinh and Armstrong’ have developed a rheological model for 
semiconcentrated suspensions, in which a constitutive equation 
which requires the calculation of the fourth-order moments of the 
distribution function is proposed to calculate the rheological prop- 
erties. Experiments performed by Bibbo et a1.6 have shown good 
agreement with the theoretical predictions in simple shear flow. 

All of these proposed models for fiber suspensions require some 
form of description of the fiber orientation. The simplest case is 
the use of a scalar, which is usually the angle 19 between the fiber 
axis and one of the reference axes, For three-dimensional cases, 
both 0 and 4 must be used to specify the orientation angle in 
spherical coordinates.3 

However, this representation is not suitable for the determina- 
tion of rheological properties; instead, at a given point and time, 
the orientation distribution function for fibers provides a complete 
description of the orientation state.7 There have been several 
studies on the solution of the orientation distribution function. 
The governing equation is a linear PDE and is also known as 
the Fokker-Planck equation. If the particles in the suspension 
are small enough to consider the Brownian effects, the analyti- 
cal solution is not available. Lea1 and Hinch’ analyzed the effect 
of weak Brownian rotations on the fiber orientation distribution 
for simple shear flows. Okagawa et al.,’ assuming negligible 
Brownian diffusion, gave the analytical solution for distribution 
function for simple shear flows. Strand et al.” solved the distri- 
bution function by using spectral methods. They considered the 
Brownian effects for an infinite fiber aspect ratio for simple 
shear flows. Although orientation distribution function contains 
the complete description, it is not always necessary to make use 
of this function. More compact forms of representations are pos- 
sible by defining the moments of the distribution function as 
orientation tensors, which are also widely used in short fiber 
composites,” semicrystalline polymers,” and polymeric liquid 
crystals,‘3”* and have an advantage over the tedious calculation 
of the distribution function. Several of these rheological models 
employ second- and fourth-order orientation tensors.53’3V15 In most 
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of the applications of these models, as an alternative to calculat- 
ing the orientation tensors by integrating over the distribution 
function, the rate of change of the orientation tensors is obtained 
by the proper integration of the Fokker-Plank equation. How- 
ever, the resulting set of equations exhibits the classical closure 
problem where the higher-order orientation tensors have to be 
approximated from the lower order ones. Common practice is to 
estimate the fourth-order tensor by using second-order orienta- 
tion tensor components. “-” Several different closure schemes 
are available (i.e., quadratic, linear, hybrid); however, the error 
caused by these closure approximations must be carefully inves- 
tigated and the suitable order and type of approximation should 
be used. 

The Dinh-Armstrong model and the basics of orientation dis- 
tribution function are briefly presented below. The subsequent 
section illustrates how the solution of distribution function is 
obtained in terms of flow kinematics. The solutions are derived 
for any two-dimensional and for a particular class of three- 
dimensional (u, = fi(x,,x,,x3), LL~ = f2(x1,x2,x3), u3 = 0) homoge- 
neous flows. Next, the commonly used rheological parameters 
are expressed in terms of the fourth-order orientation tensor com- 
ponents and the tensorial approximations are introduced. In the 
final section, the accuracy of closure approximations is investi- 
gated by computing the exact and approximate rheological prop- 
erties and fourth-order tensor components for simple shear and 
planar elongational flows. 

THEORY 

Dinh-Armstrong Model 

In developing a fundamental model for fiber orientation, a 
structural model can provide a direct link between the micro- 
structural properties and the macroscopic rheological behavior 
of a suspension system. Therefore, the ambiguities encountered 
in the phenomenological models are avoided. Instead, the results 
from a structural study can be used to establish the proper form 
of the continuum models. In semiconcentrated regions, the sub- 
ject of the current study, the average spacing between the fibers 
varies from its diameter to its length. The effect of the orientation 
state of fibers should be included in the constitutive equation in 
order to describe the system completely. The suspension may ev- 
idently be regarded as a homogeneous fluid if the length scale of 
the motion imposed on the suspension is large compared with the 
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average spacing between particles. Therefore, the problem is to 
find the rheological characteristics from the constituents, namely 
fiber and the fluid. 

The bulk stresses generated in the suspensions can be assumed 
to have two separate parts, one due to the viscous dissipation of 
the fluid and the other due to the presence of particles.” A suit- 
ably chosen volume V is used in the analysis which is large 
enough to contain many fibers but small enough to neglect the 
variation of the velocity gradient Thus, a homogeneous flow is 
required within volume V. Additionally, assuming rigid fibers 
and using no-slip boundary condition on the fiber surface, the 
stress tensor crIp’ generated in the homogeneous flow fields due 
to the presence of particles can be expressed as? 

where 

n = number density of suspension 
1 = fiber length 

d = fiber diameter 
auk 

u - ; components of the velocity gradient tensor k,l = dxl 

pi = i-th component of the unit vector denoting the fiber 
orientation 

$(p, t) = distribution function for the fiber orientation 
H = average distance from a given fiber to its 

nearest neighbor 
= (d-l” for aligned systems 
= (&‘))’ for random systems 

/L = absolute viscosity of the fluid 

In this expression,* fibers are taken as line elements, and a self- 
consistent continuum approach is made on a representative test 
fiber which is assumed to be immersed in an effective medium. 
This effective medium is considered to be the continuum approxi- 
mation of the effect of the other fibers. 

*Cartesian tensor notation is used throughout the text and summation over 
the repeated indices is implied. 
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With the assumptions stated before, the extra stress tensor 
due to the fibers a? can be written in the form: 

where Stik, is the fourth moment of the distribution function and 
defined as the fourth-order orientation tensor. The equation of 
motion for the fibers can be expressed in the form of Jeffery’s 
equation with infinite fiber aspect ratio, 

PI = ui,qPq - uk,qPqPkPt (3) 

Equation (3) is already built in Eq. (2) and the coefficient of 
the integral in Eq. (1) is determined by using the structural 
analysis of semiconcentrated suspensions.” 

Orientation Distribution Function 

The orientation distribution function $(p,t), which gives the 
probability of having a fiber with an orientation p at time t, is 
the most basic and complete description of the fiber orientation 
state. The orientation distribution function can be defined for both 
two- (planar) and three-dimensional cases. If all fibers are 
known to lie in a single plane, then a planar distribution func- 
tion is sufficient to describe the orientation state. 

For two-dimensional descriptions, the distribution function has 
a period of n, 

h(e) = 99@ + n) (4) 

The normalization condition implies that the integration over 
all the possible orientations must be unity: 

(5) 

For three-dimensional cases all possible orientations constitute 
a unit sphere. Hence, for three-dimensional orientations, Eq. (4) 
can be written as 

d~(e,+) = 44~ - e,+ + 7~) (6) 

and the normalization condition becomes, 

+(e, 4) sin e de d$ = 1 (7) 
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The governing equation for $(p, t) depends on the conservation 
of fiber orientation. This is, in a sense, the continuity condition 
for the distribution function. For homogeneous flow fields with 
negligible Brownian rotation, it is given by: 

wJ(P, t) m,+(P, 41 -=- 
at aPi 

(8) 

The solution of Eq. (8) provides the complete information on the 
fiber orientation state. However, to solve Eq. (81, proper expres- 
sion for Jo, should be used. 

SOLUTION FOR THE DISTRIBUTION FUNCTION 

If the fibers are assumed to be initially random, then the ini- 
tial condition for Eq. (8) can be obtained from normalization con- 
ditions given in Eq. (5) and Eq. (7). For planar orientations, the 
initial condition is given as: 

lj@, t = 0) = 1 (9) 
Tr 

and for three-dimensional orientations: 

(10) 

By using Eq. (10) as the initial condition, and considering that 
Eq. (3) is used in Eq. (81, the solution for the distribution func- 
tion is given as5 

+(p, t) = ; (A’A: p~)-~” 

Similarly, for two-dimensional descriptions: 

kh, t) = -$@+A: pp)-’ 
where A is the deformation gradient tensor (’ implies its trans- 
pose), and defined as: 

A, =z (13) 
J 

in which xi is the position vector at t = 0 and xj is the position 
vector at time t. The deformation gradient for any homogeneous 
flow field can be expressed in terms of flow kinematics which 
makes the calculation of distribution function much easier. 
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Two-Dimensional Distribution Function 

For any two-dimensional homogeneous flow field, the velocity 
gradient tensor can be specified as: 

C 
UiJ = 

Cl ‘( i c, -c 
(14) 

where the trace of u,,] should be zero in order to satisfy the conti- 
nuity equation, and c, cl, c2 are completely arbitrary constants. 

The displacement field can be described by using u,,~ and two 
first-order ordinary differential equations. This can be expressed 
as; 

dx -L= 
dt 

cx, + qxz 

dx -.2= 
dt 

-cxz + C& 

with the initial conditions; 

x1 = x; and x2 = x; at t = 0 

The solution of Eqs. (15) and (16) provides the deformation 
gradient tensor A, in terms of the components of the velocity 
gradient tensor u,,, . 

There are three different cases depending on the sign of the 
parameter WE = cz + c1c2. 

c2 + clcZ = 0, i.g., shear flows: 

A= 
1 - ct 
-c,t 

(17) 

cz + clcZ > 0, e.g., elongational flows: 

0 --c LeW + 2L-e w + c -0,t 
A = 2on 

l 

2% 
2 (p%” - e”“‘) 

R 

2 (pn” - (p”yJ 
n 

ye-.d + !!+-n* 
n n 

(18) 
c2 + clcZ < 0, e.g., rotational flows: 

- L sinmt 
A= 

cosV$ijt - * sin-t 
m 

- c2 sir+& 
m 

cosVji@ + -$$j sin-t 
i 

(19) 
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The two-dimensional solution of distribution function can be 
explicitly written from Eq. (12) as: 

Mht) = +[(A:, + A;,)P: + @,,A,, + &&PP~P~ 

+ (A:, + A;,,P%-’ (20) 

where 

(21) 

For simple shear flow, the velocity gradient tensor is specified 
as: 

ULJ = 
0 Y/t ( 1 0 o; wn 2’0 

where y is the total shear. Therefore, the distribution function 
for simple shear flow is: 

$&O, y) = $ [l - y sin 20 + y2 sin%-’ (23) 

Similarly, for planar elongational flow, 

E/t 0 
%i = 0 -Ejt ; ( 1 

w; > 0 (24) 

In this case E is the total elongation, and the distribution func- 
tion for planar elongational flow is: 

Jr&e, E) = L[e-ze co&3 + ezr sin%-’ 
7T 

(25) 

The two-dimensional distribution function is calculated for 
simple shear flows from Eq. (23) at five different total shears, up 
to 1.25 and is shown in Figure 1. 

Similarly, the two-dimensional distribution function for pla- 
nar elongational flow is calculated by using Eq. (25). Figure 2 
depicts the distribution function at five different total elonga- 
tions starting with random orientation. 

The preferred angle for fiber orientation for a given total shear 
can be calculated by considering: 

w44Y) _ o 
ae 

which gives 

(26) 
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Fig. 1. Two-dimensional orientation distribution function in simple shear 
flow. 0 is measured from the flow direction. 

19 = f tan-‘(2/y) (27) 

Figure 3 shows the preferred angle for fiber orientation versus 
total shear. A similar type of qualitative behavior for the pre- 
ferred angle in simple shear flows is also observed in studies 
based on Doi’s model which was developed for the polymeric liq- 
uid crystals.” 

Three-Dimensional Distribution Function 

For complete three-dimensional homogeneous flow fields, 
the same methodology can be used to describe the deformation 
gradient tensor. However, the manipulations are cumbersome. 
Therefore, in this work, special cases of three-dimensional homo- 
geneous flow fields are considered. The flow between two paral- 
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-60 -30 0 30 60 90 

8 (deg) 

Fig. 2. Two-dimensional orientation distribution function in planar elonga 
tional flow. B is measured from the flow direction. 

lel plates separated by a small distance has only two velocity 
components. On the other hand, velocity gradients may exist in 
three different planes leading to a three-dimensional orienta- 
tion. For these kinds of flow fields, the velocity gradient tensor 
is specified as: 

c Cl c3 

u = 
'a, 

l 1 
C2 -c c, (28) 
0 0 0 

The planar velocity components are now functions of the third 
direction, through cg and c4. These types of flow fields are often 
encountered in injection molding processes. Such processes are 
usually modelled as flows between plates separated by a thin gap 
width. The velocity field of these complex flows are often solved 
by discretizing the domain. At each nodal point, c, cl, and c2 
characterize the local planar velocity gradients and, cg and c4 
characterize the variation of velocity field through the gap thick- 
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Fig. 3. Maximum orientation angle vs. total shear for simple shear flow. 

ness. In order to predict the fiber orientation in complex flows, 
the distribution function needs to be solved several times along a 
particle path, and by considering the several local velocity gradi- 
ent tensors. A similar solution by using Jeffery’s equation is re- 
ported by Givle? and Jackson et al7 for two-dimensional flows. 

For three-dimensional descriptions, the explicit expression for 
the distribution function can be written from Eq. (11) as: 

where 

(30) 

From the given velocity gradient tensor u,,~, the resulting two 
ordinary nonhomogeneous differential equations can be obtained as 
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(31) 

with the initial conditions: 

x1 = x; and x2 = x; at t = 0 

Following the same procedure as in two-dimensional case, 
Eq. (31) and Eq. (32) are solved to obtain the deformation gradi- 
ent tensor A,. 

(A,,), @,z)m A13 

4, = (A& (A&D Azs (33) 
0 0 1 

where 
For c2 + clcz = 0: 

AI3 = f (cc? + c&t2 - c,t 

AZ3 = &,c, - cc,)t’ - c,t 

For c2 + clcz > 0: 

(34) 

(351 

4, = 
e-ant 

- (36) 

(37) 

AB = 
e-wn’ 

c2c3 + cc4 - 
( i 2 % (38) 

For c2 + clc2 < 0: 

An = c1c4m~ CC3(~o~mt) - : sinmt (391 
n 

C2C3 + CC4 
A23= 2 (cosmt) - : sinat (40) 

wrl 
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The other components of the deformation gradient tensor re- 
main the same as in the two-dimensional solution. 

One important flow types in polymer processing is the uniaxial 
extensional flow, which often occur in blow molding, spinning, 
and foaming operations. The velocity gradient tensor for this 
type of flows is: 

’ l 

e/t 0 0 
utj= 0 --E/2t 0 (41) 

0 0 --E/2t 1 

Therefore, the deformation gradient tensor Aij becomes: 

e --t 0 0 
A., = 0 ec12 0 

l 1 
(42) 

0 0 ei2 

Using Eq. (42) together with Eq. (29) and Eq. (301, the explicit 
expression for distribution function is obtained as: 

$(O, 4, E) = &[em2e sin20 cos2+ + et sin20 sin24 + e’ co~%-~‘~ 

(43) 

These solutions of the orientation distribution function provide 
the complete transient information about the fiber orientation 
state for the flows under consideration. Despite being the most 
accurate, this approach for describing the fiber orientation is not 
convenient for three-dimensional cases. In the next section, the 
possibility of presenting the same information with orientation 
tensors is investigated. 

ORIENTATION TENSORS 

Orientation tensors are a suitable and concise way of describ- 
ing the orientation state.4 Since the distribution function is 
even, only even-order tensors describe the orientation state. The 
second- and fourth-order orientation tensors are defined as: 

sag E (PiP,) c IPLPjNPldP (44) 

Stjkl E (PiPjPkPl) E $ P~PjPkPdb) dP (45) 

These tensors represent the moments of distribution function, 
and are invariant under orthogonal transformations. They can be 
used for both two- and three-dimensional descriptions. The order 
of the indices is not important due to complete symmetry of these 
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tensors. The normalization condition implies that the trace of the 
second-order orientation tensor is unity. Using these properties 
of the orientation tensors, one can easily show that the higher- 
order tensors contain the lower-order ones. Therefore, the total 
number of independent components of an nth-order tensor is: 

IL,‘2 
N = c (4i + 1) (46) 

1=1 

The non-zero second-order tensor components are calculated 
for simple shear and planar elongational flows by using Eq. (23) 
and Eq. (25) together with Eq. (44). The IMSL integration sub- 
routine DBLIN,” which utilizes the adaptive Romberg method, 
is used and the results are shown in Figures 4 and 5. From the 
components of second-order tensor, orientation state can be de- 
scribed using ellipsoids. The eigenvalues and the eigenvectors of 
the second-order orientation tensor give the three major axes of 
the ellipsoid, and indicate the degree of orientation along these 
directions. The orientation ellipsoids are calculated for two dif- 
ferent total shear and total elongation, and the three orthogonal 
views of the orientation ellipsoids are shown in Figures 6 and 7. 

The rheological properties of the fiber suspensions can be eas- 
ily calculated with the fourth-order tensor Stikl using the Dihn- 
Armstrong model. For shear flows, the transient viscosity, first 

0 5 10 15 20 25 

Total shear 

Fig. 4. Non-zero components of second-order orientation tensor for simple 
shear flow. 
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IOfl 

* 

0 1 2 3 4 5 

Total elongation 

Fig. 5. Non-zero components of second-order orientation tensor for planar 
elongational flow. 

(a) (b) Cc) 
Fig. 6. Orientation ellipsoids for simple shear flow: (a) y = 0.0; (b) y = 1.0; 

Cc) y = 2.0. 

(a) (b) Cc) 

Fig. 7. Orientation ellipsoids for planar elongational flow: (a) E = 0.0; (b) 6 = 
0.5; Cc) E = 1.0. 

normal stress difference, and the second normal stress difference 
are used to characterize the behavior of tiber suspensions. These 
quantities are defined as: 
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I.L+ = a,,/? (47) 

w = (WI1 - ~22W (48) 

w = (a22 - ~33m2 (49) 

Similarly, for planar elongational flow, the planar extensional 
viscosity is defined as: 

+ - 
PP - (fl11 - m22)/i (50) 

In order to characterize the rheological properties, the dimen- 
sionless parameters for fiber suspensions are obtained from 
Eq. (2). 

[ 1 P-1 = sn22 
P n13n 

(51) 

652) 

(53) 

[ 1 d-4 = sm, + s2222 - 2&,22 (54) 
CL d3n 

These expressions show that the rheological properties can 
be directly obtained from the fourth-order orientation tensor 
components. 

Instead of calculating the distribution function and then de- 
termining the orientation tensors, the time evolution of the ori- 
entation tensors, i.e., S,, can be expressed in terms of the flow 
kinematics by suitable integration of the Fokker-Plank equa- 
tion. However, the resulting expression always generates a clas- 
sic closure problem; that is, the expression contains the next 
even higher-order orientation tensor, i.e., Sljkl, which is not 
known. This problem also emerges in several other areas of rhe- 
ology as well as in many other stochastic systems. Usually, a 
closure approximation is used where the higher-order tensor is 
expressed in terms of the lower-order ones. This reduces the 
problem to a closed set of equations. The form of closure approxi- 
mations affects both the accuracy of the description of the orien- 
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tation state (maximum orientation angle and the degree of 
alignment) and the predictions of the stresses generated due to 
fibers. Therefore, the investigation of the order and the type of 
closure approximations is needed for the accurate and efficient 
characterization of the suspension behavior. The simplest and 
widely used ones are quadratic (preaveraging),23,24 

S LJkl = 8, ski (55) 

and linear (first order),16-18 

approximations. Particularly, in process simulations the ad hoc 
quadratic approximation is used most often. Although the qua- 
dratic approximation introduces nonlinearity into the system, the 
solution is relatively easy to obtain and the results are always 
stable. On the other hand, this approximation does not preserve 
required tensorial symmetry; that is, the two components of the 
orientation which are defined to be equivalent can be approxi- 
mated in two different ways (i.e., S,,,, = S,,S,, and S,,,, = S&1. 
The linear approximation yields satisfactory results when the 
fibers are relatively random. In fact, one can show that the lin- 
ear closure is exact for the completely random orientation states. 
For shear flows, this approximation is successfully applied to di- 
lute systems for smaller fiber aspect ratios, (i.e., ap < 101. How- 
ever, the error actually depends on the a,,, and the closure 
equation fails completely as up -+ x (either diverges or oscil- 
lates).25 These observations are also confirmed in the study of 
Advani and Tucker4 for planar orientations. Consequently, the 
implementation of linear closure is ruled out for the Dinh-Arm- 
strong model, which utilizes the Jefferys equation with infinite 
aspect ratio. Nevertheless, another alternative is to use a hybrid 
scheme which combines the quadratic and linear approximations 
with a parameter f. This composite approximation can perform 
more accurately and stably over the entire range of orientation 
states with the proper choice off.” 

SiJkl = (1 - f)SVlkLIiyEAE + fSqklgUADRATIc (571 

Here, the parameter fmust be a function of the invariants of the 
orientation tensor and must be unity when all fibers are aligned 
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and must vanish when all fibers are random. For three-dimen- 
sional flows, among several other choices, f is taken as? 

f = 1 - 271, (58) 

13 = $il - 3s,sj + 2S,SjkSkr) (59) 

For simple shear and planar elongational flows, the exact 

fourth-order orientation tensor components are calculated by 
using Eqs. (29) and (30) together with Eq. (45). Again, IMSL in- 
tegration subroutine DBLIN is used. Some of the non-zero 
fourth-order components are also estimated from the exact sec- 
ond-order components with quadratic and hybrid approximation, 
and are compared with the exact results calculated from Eq. (45). 
These are shown in Figures 8 and 9. 

The exact and approximated results for the dimensionless tran- 
sient viscosity Snzz are shown in Figure 8(c). The other rheological 
properties given in Eqs. (57)--(59) are calculated from the exact 
results and are also estimated with quadratic and hybrid approx- 
imations. These are depicted in Figures 10 to 12. 

0.6 

0.2 

0.0 

0 5 10 15 20 

Total shear 

(a) 

Fig. 8. Approximations for the fourth-order orientation tensor components vs. 
total shear for simple shear flow. (a) SInI; (b) 5&; Cc) Snzz; Cd) SnS3. -, exact; 
---. , quadratic; ----, hybrid. 
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(Fig. 8. continued) 

RESULTS AND DISCUSSION 

In this work, the solutions of the two-dimensional and three- 
dimensional orientation distribution function are obtained in 
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25 

terms of the velocity gradients. The governing equation for the 
orientation distribution function is based on the Dinh-Armstrong 
model for semiconcentrated fiber suspensions. 

The two-dimensional distribution function is calculated for 
simple shear and planar elongational flows by using random ini- 
tial conditions. Figures 1 and 2 show that once the shear rate or 
elongational rate is specified, the governing parameter for the 
orientation is total shear or total elongation. These figures clearly 
indicate that the elongational flow is much more effective in 
aligning the fibers. The results for the simple shear flow show 
that the alignment of fibers starts around 45 degrees with flow 
direction for very small total shears, and as the total shear in- 
creases, fibers tend to align in the shear direction. At high total 
shears, the distribution function narrows down, indicating that 
the fibers are more likely to be around the preferred angle. 
Figure 3 shows the preferred angle versus total shear. This 
maximum angle of orientation starts at 45 degrees and asymp- 
totically approaches zero at infinitely high total shears. For pla- 
nar elongational flows, the fibers are always most likely to be 
around the elongation axis. 

Although similar qualitative behavior is observed in Doi’s 
model, the maximum orientation angle starts at different values 
(lower than 45 degrees) for zero shear limit depending on a 
dimensionless concentration coefficient U. The initial orienta- 
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Total elongation 

(b) 
Fig. 9. Approximations for the fourth-order orientation tensor components 

vs. total elongation for planar elongational flow. (a) Still; (b) S,,,; (c) S,,3. -, 
exact; ---., quadratic; ----, hybrid. 

tion angle is predicted to be decreasing with the increase in con- 
centration. On the other hand, Doi’s model also predicts perfect 
alignment with the flow at infinitely high total shears but the 
rate of alignment is predicted to be at a much slower rate com- 
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Fig. 10. Approximated dimensionless first normal stress difference vs. total 
shear for simple shear flow. -, exact; ---, quadratic; ---, hybrid. 

pared with the Dinh-Armstrong model.” Another similarity be- 
tween these two models is that the orientation state is a function 
of the total strain (i.e., total shear, total elongation) not the 
strain rate or time separately.27 



FIBER SUSPENSION ORIENTATION STATES 1151 

- ,“” , 0 5 10 1'5 2; 25 

Total shear 

Fig. 11. Approximated dimensionless second normal stress difference vs. to- 
tal shear for simple shear flow. -, exact; ---, quadratic; ---, hybrid. 
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Fig. 12. Approximated dimensionless planar elongational viscosity vs. total 
elongation for planar elongational flow. -, exact; ---, quadratic; ---, hybrid. 

The analytical solutions are then employed to calculate the 
orientation tensor components, which can be used to approxi- 
mate the fiber orientation state. For simple shear flows, the non- 
zero components of the second-order orientation tensor are 
calculated up to total shear of 25 and are shown in Figure 4. 
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S,, is the second moment of distribution function with respect to 
flow direction. Similarly, SZ3 is calculated with respect to the X3 
direction (neutral axis). Since S,, + S,, + S,, = 1, only two of 
the diagonal components of this tensor are independent. There- 
fore, together with SIZ, there are three independent non-zero 
components. The non-zero S,, indicates a preferred direction 
that does not coincide with the coordinate axes used in the flow 
description. In Figure 4, S,, approaches 1 asymptotically, and all 
the other components go to zero at very high total shear, which 
indicates that all the fibers are aligned in the flow direction. 

For planar elongational flows, the second-order tensor compo- 
nents are shown in Figure 5 up to a total elongation of 5. There 
are only two independent non-zero components. S,, is the second 
moment of distribution function with respect to flow direction. 
Since S,, is always greater than SZZ and Ss3, and the tensor is 
always diagonal, flow direction is the angle of maximum orien- 
tation all the time. Furthermore, Ss3 > SZZ indicates that the 
probability of having fibers along neutral direction is greater 
than having fibers perpendicular to the flow direction. 

From the second-order tensor components, the orientation el- 
lipsoid is used to decribe orientation state. For any second-order 
orientation tensor, three eigenvalues A, > A, > A, and corre- 
sponding three eigenvectors e,, e2, and e3 can be found. The 
maximum orientation direction is specified by e, and the degree 
of orientation along that direction is governed by A,. The de- 
scription of orientation state on any plane can be represented by 
the projection of the orientation ellipsoid on that plane. The 
graphical representations of three-dimensional fiber orientation 
for simple shear and planar elongational flows are shown in 
Figures 6 and 7. Since the initial orientation distribution is de- 
scribed by a sphere, all three views of the distribution function 
are shown as circles with radius 114~. In these figures, x, is 
the flow direction and x3 is the neutral axis. For shear flow, the 
preferred angle is always in the shear plane. Neither flow has 
axisymmetric orientation distribution. As shown in Figures 6 
and 7, the orientation ellipsoids are deformed faster in the shear 
and extensional x1-lc2 plane in comparison with the neutral x1-x3 
plane. 

The fourth-order tensor components are approximated using 
quadratic and hybrid approximation from the exact values of 
second-order tensor. As Eqs. (56)-(59) indicate, the rheological 
properties which are commonly used in the characterization of 
fluids can be expressed in terms of the fourth-order tensor. In fact, 
each independent component of the fourth-order tensor is.related 

. 
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directly to the rheology of the fiber suspensions. Although ap- 
proximating the fourth-order tensor from second-order tensor 
has been widely used, these approximations can introduce sig- 
nificant errors in stress states as well as orientation descrip- 
tions. 

The approximations for some non-zero fourth-order tensor 
components for simple shear flow are shown in Figure 8(a)-(d). 
In Figure 8(b) and 8(d), the quantitative discrepancy is quite 
large. For planar elongational flow, the approximations for some 
non-zero fourth-order orientation tensor components are shown 
in Figure 9(a)-(d). In this case, Figure 9(b) and 9(d) have consid- 
erable quantitative errors. 

In rheological predictions for simple shear flow, the approxi- 
mations for transient viscosity agreed well with the exact value, 
except the quadratic closure started at a different value at the 
zero strain limit, but converged quickly to the exact solution. 
Both approximations performed well for the first normal stress 
difference; however, for the second normal stress difference, 
quadratic closure failed to depict the initial overshoot and both 
closures exhibit large undershoots, resulting in considerable in- 
accuracy. For planar elongational viscosity, approximate solu- 
tions are in qualitative agreement but quantitative accuracy 
was not satisfactory for small strains (i.e., for E < 1). 

Since all of the independent non-zero components of the fourth- 
order orientation tensor are needed to describe the rheology of the 
suspension, the type and the order of approximations used needs 
to be examined thoroughly. The approximations may result in 
even larger errors for complex flow fields, where both shear and 
elongational velocity gradients exist in all three different planes. 
Therefore, higher-order approximations may be required for the 
accurate description of suspension mechanics. 

CONCLUDING REMARKS 

In this study, the two- and three-dimensional description of 
fiber orientation is presented for arbitrary homogeneous flows. 
The equation of motion of fibers is based on the Dinh-Armstrong 
model. The solution for orientation distribution function is ex- 
pressed in terms of fluid kinematics, which permits accurate 
calculation of the orientation tensor components. From second- 
order orientation tensor components, an orientation ellipsoid is 
defined to represent the three-dimensional orientation state of 
the fiber suspensions. 
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The analysis showed that the commonly used rheological prop- 
erties for these material systems can be expressed as the combi- 
nations of fourth-order orientation tensor components. The 
fourth-order tensor components are estimated from the exact 
second-order components through hybrid and quadratic approxi- 
mations. Usually, the hybrid approximation gave better results. 
This approximation always started from the exact value; however, 
in most cases, it quickly converged to the quadratic approximation. 

Although the exact and approximated fourth-order tensor 
components showed the same qualitative behavior, large quanti- 
tative discrepancies are observed in some cases, leading to inac- 
curate predictions of rheological properties. 

This study was supported by the Center for Composite Materials 
through the National Science Foundation Engineering Research Cen- 
ters program. The authors would like to thank Dr. A. N. Beris for his 
helpful discussions. 
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