CHAPTER 7

- If \(x(t) \) is periodic with period \(T \), so that
 \[
 x(t+T) = x(t) \quad \forall \ t \in \mathbb{R},
 \]
 then \(x(t) \) can be written as a Fourier series according to
 \[
 x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jkw_s t}
 \]
 where \(w_s = \frac{2\pi}{T} \)
 and where the Fourier series coefficients \(a_k \)
 are given by
 \[
 a_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t) e^{-jkw_s t} \, dt
 \]
 - The Fourier transform of \(x(t) \) is given by
 \[
 X(w) = \mathcal{F} \left[\sum_{k=-\infty}^{\infty} a_k e^{jkw_s t} \right]
 = \sum_{k=-\infty}^{\infty} a_k \mathcal{F} \left[e^{jkw_s t} \right]
 = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(w-kw_s)
 \]
 - A train of equidistant weighted impulses.
 - We see that the F.T. of a periodic signal is pure impulses.
Now consider the periodic signal
\[p(t) = \sum_{n=-\infty}^{\infty} \delta(t+nT) \]

\[\begin{array}{cccccc}
-2T & -T & 0 & T & 2T \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & t
\end{array} \]

Write as a Fourier Series:
\[W_S = \frac{2\pi}{T} \]

\[a_k = \frac{1}{T} \int_{-T/2}^{T/2} p(t)e^{-i kw_S t} dt \]

\[= \frac{1}{T} \int_{-T/2}^{T/2} \sum_{n=-\infty}^{\infty} \delta(t+nT) e^{-i kw_S t} dt \]

Only the \(n=0 \) term is non-zero in the region of integration \([-T/2, T/2]\)

\[= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-i kw_S t} dt = \frac{1}{T} \cdot 1 = \frac{1}{T} \]

(fore all \(k \))

So

\[p(t) = \sum_{k=-\infty}^{\infty} a_k e^{i kw_S t} = \frac{1}{T} \sum_{k=-\infty}^{\infty} e^{i kw_S t} \]

And

\[P(w) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(w-kw_S) = \frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta(w-nw_S) \]

Where \(W_S = \frac{2\pi}{T} \)
- Sampling is a way to convert a continuous-time signal into a discrete-time signal.
- This is done by setting the discrete-time signal \(x[n] \) equal to uniformly spaced samples of the continuous-time signal \(x(t) \).
- An "analog to digital converter", or ADC (also called an "A to D" or an "A/D" converter) is a device that can do this.
- Intuitively, if we sample \(x(t) \) "fast enough", then no information will be lost...
- That is, in theory we could recover \(x(t) \) from \(x[n] \).

- Why do this?

Here are some reasons:

1. You are asked to design a filter to remove noise from an analog signal.
 Suppose you design the circuit to do it.
 → If the noise changes at some later time, you have to design a new circuit.
 → If you had sampled the signal and used a digital filter instead, the change would require new software, but not new hardware.

2. If the analog signal \(x(t) \) is represented by samples \(x[n] \), then it does not degrade over time. Also, it does not degrade when you copy it.

EX: Audio Compact Disc.
What is meant by sampling "fast enough"?

Consider the three signals $x_1(t)$, $x_2(t)$, and $x_3(t)$ below:

If we generate $x[n]$ by taking a sample every T seconds, then from $x[n]$ we can't tell which signal we started with. Information is lost during sampling in this case.

Clearly, sampling every T seconds is not fast enough for these signals.

When we sample a continuous-time signal $x(t)$ every T seconds, we get a discrete-time signal

$$x[n] = x(nT)$$

So $x[0] = x(0)$, $x[1] = x(T)$, $x[-1] = x(-T)$,

$$x[2] = x(2T), x[-2] = x(-2T) \ldots$$

To answer the question of how fast is "fast enough" to sample, we need to represent the sampling mathematically.
To do this, we will use a periodic impulse-train \(p(t) \) called a "sampling function":

\[
p(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)
\]

"T" is called the "sampling period", or "sampling interval".

- The sampling frequency is \(\omega_s = \frac{2\pi}{T} \) rad/sec.
- The sampled signal is \(x_p(t) = x(t)p(t) \).

⇒ since \(x(t)\delta(t-nT) = x(nT)\delta(t-nT) \), we can get the values for \(x[n] \) by "picking off" the weights of the impulses in \(x_p(t) \):

\[
x_p(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT)
\]
- If we can get back $x(t)$ from $x_p(t)$, then the sampling is "fast enough", and no information is lost.

 \[X[n] \text{ contains all of the information that was in } x(t). \]

- As we saw last time, the Fourier transform of the impulse train $p(t)$ is itself an impulse train in frequency:

 \[P(w) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(w - kw_s) \]

- Using the frequency convolution property of the Fourier transform, we see that

 \[X_p(w) = \frac{1}{2\pi} X(w) * P(w) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(w - kw_s) \]

- So $X_p(w)$ contains periodic repetitions of $X(w)$, centered at integer multiples of w_s.

- Since $w_s = \frac{2\pi}{T}$, sampling \underline{faster} makes these periodic repetitions \underline{further apart}.

\[\text{PAGE 7.4} \]
EX:

In this case, $X(t)$ is bandlimited, so that $X(\omega) = 0$, $|\omega| > \omega_M$.

→ If we sample "fast", then the periodic repetitions of $X(\omega)$ do not overlap:

→ Then we can recover $x(t)$ from $x_p(t)$ using a low-pass filter.

→ If we sample too slowly, then the periodic repetitions of $X(\omega)$ overlap and we cannot recover $x(t)$ from $x_p(t)$:

→ This is called "aliasing".
- From the figures on page 7.5, we can see how to prevent aliasing.
- We need to have $\omega_M < \omega_S - \omega_M$

 \[\Rightarrow \text{In other words, } \omega_S > 2\omega_M \]

 \[\Rightarrow \text{So we need } T < \frac{\pi}{\omega_M} \]

 \[\Rightarrow \text{In other words, the higher the frequency content of the signal } x(t), \text{ the faster we have to sample to prevent aliasing (information loss).} \]

Sampling Theorem:

Let $x(t)$ be a band-limited signal with $X(j\omega) = 0$ for $|\omega| > \omega_M$. Then $x(t)$ is uniquely determined by its samples $x(nT)$, $n = 0, \pm 1, \pm 2, \ldots$, if

\[
\omega_s > 2\omega_M,
\]

where

\[
\omega_s = \frac{2\pi}{T}.
\]

Given these samples, we can reconstruct $x(t)$ by generating a periodic impulse train in which successive impulses have amplitudes that are successive sample values. This impulse train is then processed through an ideal lowpass filter with gain T and cutoff frequency greater than ω_M and less than $\omega_s - \omega_M$. The resulting output signal will exactly equal $x(t)$.

- $2\omega_M$, the minimum sampling frequency to prevent aliasing, is called the "Nyquist rate", or the "Nyquist frequency" for the signal $x(t)$.

Page 7.6
Reconstruction

Original signal

Sampled signal

Reconstructed signal

\[p(t) = \sum_{n=-\infty}^{\infty} x(n) \delta(t - nT) \]

\[x_p(t) \]

\[H(\omega) \]

\[x_r(t) \]

Original spectrum

Sampled spectrum

Frequency response of reconstruction filter

Reconstructed spectrum
Since the reconstruction filter is an ideal low-pass filter, the impulse response is

\[h(t) = \frac{w_c T \sin \omega_c t}{\pi \omega_c t} = \frac{T \sin \omega_c t}{\pi t} \]

The reconstructed signal is

\[x_r(t) = x_p(t) \ast h(t) \]

\[= \left[\sum_{n=-\infty}^{\infty} x(nT) \delta(t-nT) \right] \ast h(t) \]

\[= \sum_{n=-\infty}^{\infty} x(nT) h(t-nT) \]

\[= \sum_{n=-\infty}^{\infty} x(nT) \frac{T \sin[\omega_c (t-nT)]}{\pi (t-nT)} \]

\[\Rightarrow \text{If: } w_s > 2\omega_M \text{ and } \omega_M < \omega_c < w_s - \omega_M , \]

then \[x_r(t) = x(t) . \]

NOTE: in practice, a real impulse-train can not be generated. Instead, a device called a "zero-order hold" is used to implement the A-D converter.

\[\Rightarrow \text{This requires some modifications to the reconstruction filter. See section 7.1.2 of the book for the details.} \]
NOTE: Many real-world signals are not band limited. To prevent aliasing, a low-pass filter must be applied prior to A-D conversion to bandlimit the signal.

→ Such a filter is called an "anti-aliasing filter."

NOTE: The reconstruction filter performs digital to analog conversion. It is called a "D to A" converter, a "DAC", or a "D/A".

Discrete-Time Processing of Continuous-Time Signals

- Today, many continuous-time systems are implemented using A-D conversion, a digital signal processor (DSP), and D-A conversion.

- This gives us flexibility, because the system properties can be changed by simply writing new software, without the need to change any hardware.

\[
\begin{align*}
 x_c(t) &: \text{continuous-time input signal} \\
 y_c(t) &: \text{continuous-time output signal} \\
 x_d[n] &: \text{discrete-time input signal} \\
 y_d[n] &: \text{discrete-time output signal}
\end{align*}
\]

\[
\begin{align*}
 x_d[n] &= x_c(nT) \\
 y_d[n] &= y_c(nT)
\end{align*}
\]
More specifically,

The relationship between $x_d[n]$ and $x_c(t)$ obviously depends on the sampling rate $\omega_s = \frac{2\pi}{T}$.

Figure 7.21 Sampling with a periodic impulse train followed by conversion to a discrete-time sequence: (a) overall system; (b) $x_p(t)$ for two sampling rates. The dashed envelope represents $x_c(t)$; (c) the output sequence for the two different sampling rates.
To study the discrete-time processing of continuous-time signals, we must look at what happens in the frequency domain.

Thus, we will need to distinguish between discrete-time or "digital" frequencies and continuous-time or "analog" frequencies.

The book uses "ω" for continuous-time frequency:
\[x_c(t) \overset{\mathcal{F}}{\rightarrow} X_c(\omega) \quad y_c(t) \overset{\mathcal{F}}{\rightarrow} Y_c(\omega) \]
and "Ω" for discrete-time frequency:
\[x_d[n] \overset{\mathcal{F}}{\rightarrow} X_d(e^{i\Omega}) \quad y_d[n] \overset{\mathcal{F}}{\rightarrow} Y_d(e^{i\Omega}) \]

NOTE: This is backwards from the convention most often used in the literature. Most authors use "ω" for discrete frequency and "Ω" for continuous-time frequency.

Recall:
\[X_p(t) = \sum_{n=-\infty}^{\infty} x_c(nT) \delta(t-nT) \]

Since \(\delta(t-nT) \overset{\mathcal{F}}{\rightarrow} e^{-i\Omega nT} \), we have
\[X_p(\omega) = \sum_{n=-\infty}^{\infty} x_c(nT) e^{-i\Omega nT} \quad (*) \]
By definition, the Fourier transform of \(x_d[n] \) is

\[
x_d(e^{i\omega}) = \sum_{n=-\infty}^{\infty} x_d[n] e^{-i\omega n}
\]

→ since \(x_d[n] = x_c(nT) \),

\[
x_d(e^{i\omega}) = \sum_{n=-\infty}^{\infty} x_c(nT) e^{-i\omega n} \quad (* *)
\]

\[
= \lim_{N \to \infty} \sum_{n=-N}^{N} x_c(nT) e^{-i\omega n} \bigg|_{\omega = \frac{\pi}{T}}
\]

→ Comparing (* *) to (*) on page 7.11, we see that

\[
x_d(e^{i\omega}) = X_p\left(\frac{\omega}{T}\right).
\]

Recall that \(X_p(\omega) \) contains periodic repetitions of \(X_c(\omega) \).

→ So \(x_d(e^{i\omega}) \) is also periodic, as it must be since it is a discrete-time Fourier transform.

\[
\Rightarrow \text{The period of } X_p(\omega) \text{ is } \omega_s = \frac{2\pi}{T}
\]

\[
\Rightarrow \text{The period of } x_d(e^{i\omega}) \text{ is } 2\pi, \text{ like all discrete-time Fourier transforms.}
\]

→ We see once again that the sampling frequency \(\omega_s = \frac{2\pi}{T} \) determines the relationship between \(X_c(\omega) \), \(X_p(\omega) \), and \(x_d(e^{i\omega}) \).
In fact, as we saw on page 7.4,

\[X_p(\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(\omega - k\omega_s) \]

So,

\[X_d(e^{j\Omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c(\frac{\Omega}{T} - \frac{2\pi k}{T}) \]

Figure 7.22 Relationship between \(X_c(j\omega) \), \(X_p(j\omega) \), and \(X_d(e^{j\Omega}) \) for two different sampling rates.
- So the overall strategy to implement a continuous-time system $H_c(w)$ is:
1. Convert input signal $x_c(t)$ to an impulse train $x_p(t)$.
2. Convert $x_p(t)$ to a discrete-time signal $x_d[n]$.
3. Process $x_d[n]$ with a discrete-time system $H_d(e^{j\omega})$ implemented with a computer or DSP to get $y_d[n]$.
4. Convert $y_d[n]$ to an impulse train $y_p(t)$.
5. Use a low-pass reconstruction filter to convert $y_p(t)$ into the desired continuous-time output signal $y_c(t)$.

Figure 7.24 Overall system for filtering a continuous-time signal using a discrete-time filter.

- The overall system is a continuous-time system.
- The overall frequency response is $H_c(w)$.
- This is implemented using a discrete-time system with frequency response $H_d(e^{j\omega})$.

PAGE 7.14
-In the frequency domain,

Figure 7.25 Frequency-domain illustration of the system of Figure 7.24: (a) continuous-time spectrum $X_c(j\omega)$; (b) spectrum after impulse-train sampling; (c) spectrum of discrete-time sequence $x_d[n]$; (d) $H_d(e^{j\Omega})$ and $X_d(e^{j\Omega})$ that are multiplied to form $Y_d(e^{j\Omega})$; (e) spectra that are multiplied to form $Y_p(j\omega)$; (f) spectra that are multiplied to form $Y_c(j\omega)$.

What is the relationship between $H_c(j\omega)$ and $H_d(e^{j\Omega})$?
- For the overall system, \(Y_c(w) = X_c(w) H_c(w) \) (*)

- For the discrete-time system, \(Y_d(e^{i\omega}) = X_d(e^{i\omega}) H_d(e^{i\omega}) \).

 - Writing \(\omega T \) instead of \(\omega \), we have (recall: \(\omega T = \omega \))
 \[
 Y_d(e^{i\omega T}) = X_d(e^{i\omega T}) H_d(e^{i\omega T})
 \] (***)

 - But \(X_d(e^{i\omega}) = X_p(\frac{\omega}{T}) \) and \(Y_d(e^{i\omega}) = Y_p(\frac{\omega}{T}) \), as we saw on page 7.12.

 - So \(X_d(e^{i\omega T}) = X_p(\omega) \) and \(Y_d(e^{i\omega T}) = Y_p(\omega) \).

 - Thus, plugging into (***), we have
 \[
 Y_p(\omega) = X_p(\omega) H_d(e^{i\omega T}).
 \] (***)

- Now, \(X_c(\omega) \) and \(Y_c(\omega) \) are just the fundamental periods of \(X_p(\omega) \) and \(Y_p(\omega) \). Plugging into (***)

 - we have
 \[
 Y_c(\omega) = X_c(\omega) H_d(e^{i\omega T}).
 \] - fundamental period

 - Comparing this to (*) above, we see that
 \[
 H_c(\omega) = \text{fundamental period of } H_d(e^{i\omega T})
 \]
 \[
 = \begin{cases}
 H_d(e^{i\omega T}), & |\omega| < \frac{\omega_s}{2} \\
 0, & |\omega| > \frac{\omega_s}{2} \end{cases}
 \]
Thus, the equivalent "analog" frequency response is equal to the fundamental period of the "digital" frequency response up to a scaling of the frequency axis by $\frac{1}{T}$:

\[
\begin{align*}
H_d(e^{i\omega}) &= H_c\left(\frac{\omega}{\Omega}\right) \\
&\text{ (fundamental period)}
\end{align*}
\]

Given a desired continuous-time frequency response $H_c(\omega)$, we design the discrete-time system by setting

\[H_d(e^{i\omega}) = \sum_{k=-\infty}^{\infty} H_c\left(\frac{\omega - 2\pi k}{T}\right)\]

NOTE: Multiplying $x_c(t)$ by $p(t)$ to get $x_p(t)$ is not a linear shift invariant operation. However, provided that the sampling theorem is satisfied, a discrete-time LSI system $H_d(e^{i\omega})$ can be used to implement a continuous-time LSI system $H_c(\omega)$. PAGE 7,17
EX: digital differentiator:

- Recall: if \(x(t) \xrightarrow{\mathcal{F}} X(\omega) \), then \(\frac{d}{dt} x(t) \xrightarrow{\mathcal{F}} j\omega X(\omega) \).

- So, a system with frequency response \(H(\omega) = j\omega \) is a differentiator:

\[
\begin{array}{c}
X_c(t) \\
\downarrow \quad \boxed{H(\omega) = j\omega} \\
Y_c(t) = \frac{d}{dt} X_c(t)
\end{array}
\]

- If the input signals \(X_c(t) \) are bandlimited, so that \(X_c(\omega) = 0, |\omega| > \omega_c \), then this can be implemented with a bandlimited frequency response

\[
H_c(\omega) = \begin{cases}
 j\omega, & |\omega| < \omega_c \\
 0, & |\omega| > \omega_c
\end{cases}
\]

- To implement this system digitally, we must sample at a frequency \(\omega_s = 2\omega_c \) or greater.

- The fundamental period of the equivalent discrete-time frequency response is

\[
H_d(e^{j\omega}) = j \frac{\omega}{T}, \quad |\omega| < \pi.
\]
\[H_c(\omega) \]
\[|H_c(j\omega)| \]
\[\angle H_c(j\omega) \]

\[H_a(e^{j\Omega}) \]
\[|H_a(e^{j\Omega})| \]
\[\angle H_a(e^{j\Omega}) \]