
ECE 2713

Design Project

Spring 2025 Dr. Havlicek

DUE: 04/27/2025, 11:59 PM

CAN BE TURNED IN LATE WITHOUT PENALTY UNTIL:

05/2/2025, 11:59 PM

What to Turn In:

Submit your solution for this assignment electronically by uploading two files to to the
course Canvas page:

1. a regular MS WORD or PDF report file just like you made for Homework 3 and
Homework 6;

2. a filtered digital audio wave file called filteredsig.wav that you will create.

Remember:

Make sure to include your name in your turn-in report file and add a title at the top of
the first page that says “ECE 2713” and “Design Project.” Number the problems and paste
in your Matlab code, the resulting command window output, and the figures and graphs.
Number the problems and paste in your Matlab code and the resulting command window
output. Paste in the figures and graphs and make sure to include your answer for the
explanation/discussion question in Problem 3(c).

• If you are using the Virtual Labs, make sure to save all your files before you log out!

• If you use m-files, you can paste them into your turn-in file.

• As you work the problems, you can also use the mouse to cut your Matlab code and
resulting output from the command window and paste them into your turn-in file.

• You can also use the Matlab diary command as explained in Homework 3 and Home-
work 6 to save a session log from the command window into a file which you can then
insert into your turn-in file.

• For figures and graphs, you can use the File pulldown menu of the Matlab Figure
Window to save them as JPEG or BMP files and then insert them into your turn-in
file as pictures. To make the color work on the Virtual Labs, I had to open “Export
Setup” from the File menu of the Matlab Figure window and uncheck the “custom
color” box.

1

The Assignment:

Professional compact disc digital audio is sampled with a sampling frequency of Fs = 44.1
kHz. This means that there are 44,100 samples per second. The time interval between
samples is called the sampling period. It is given by Ts = 1/Fs ≈ 22.676 µsec. Although
professional compact disc audio signals are stereo and have two channels of audio data, in
this project we will only consider single-channel (mono) audio signals.

The audio samples are stored as 16-bit two’s complement integers. In high performance
professional applications, they are stored without compression. For computer processing,
the digital audio samples are usually stored in a wave file (.wav). Matlab provides a built-in
function audioread that can read the digital audio data in a wave file into a Matlab array.
It also provides a built-in function audiowrite that can write the digital audio data in a
Matlab array out to a wave file.

The Matlab statement

[x,Fs] = audioread(’test.wav’);

reads the digital audio signal contained in the file test.wav into the Matlab array x. The
sampling rate, which is stored in the wave file, is placed in the Matlab variable Fs. For
professional compact disc digital audio, it is always 44.1 kHz. When Matlab reads in the
16-bit two’s complement integer audio samples, it converts them to double precision floating
point numbers in the range [−1, 1].

The Matlab statement

audiowrite(’test.wav’,x,Fs);

writes the digital audio data stored in the double precision floating point array x out to the
wave file test.wav in 16-bit two’s complement integer format. It is important for you to
make sure that the digital audio data in the array x is normalized to the range [−1, 1] before
you call audiowrite, since operations like filtering and adding signals together will generally
change the range. This can be done by placing the Matlab statement

x = x / max(abs(x));

just before the call to audiowrite.

The Matlab statement

sound(x,Fs,16);

will play the digital audio data in the array x through the sound card as 16-bit two’s com-
plement integers with a sampling frequency of Fs. As with audiowrite, it is important for
you to ensure that the data stored in x are normalized to the range [−1, 1] before you call
sound.

The Nyquist frequency is given by Fs/2 = 22.05 kHz. A/D and D/A conversion, i.e.,
sampling, maps the analog Nyquist frequency to the digital frequency ω = π radians per
sample. Thus, if the Matlab array x holds an N -point digital audio signal, then, in the
N -point centered DFT array X = fftshift(fft(x)),

2

• the digital frequency ω goes from −π to π − 2π
N

in steps of 2π
N

, and

• the analog frequency in Hertz goes from −Fs
2

to Fs
2
− Fs

N
in steps of Fs

N
.

For practical digital audio signals, the magnitude of the centered DFT is usually plotted
in dB as 20 log10 |X[k]|. Note that this will make a numerical error if |X[k]| = 0. So, if there
are places k where |X[k]| = 0, you have to change it to a small nonzero number instead when
you compute the logarithm.

For a digital audio signal with a sampling rate of Fs Hz,

• to convert (Hertzian) analog frequency to radian digital frequency, multiply the analog
frequency by 2π

Fs
.

• to convert (Hertzian) analog frequency to Hertzian digital frequency, multiply the
analog frequency by 1

Fs
.

• to convert (Hertzian) analog frequency to normalized digital frequency, multiply the
analog frequency by 2

Fs
.

1. Recall that for professional compact disc digital audio, the sampling rate is Fs = 44.1
kHz. On a piano, the first “A note” that is located above middle C on the keyboard
has an analog frequency of 440 Hz. Consider the Matlab code below, which does the
following:

• Makes a two-second digital audio cosine signal with analog frequency 440 Hz (this
will require 44,100 × 2 = 88,200 samples). Such a signal is called a “pure tone.”

• Plays the 440 Hz pure tone through the sound card.

• Plots the centered DFT magnitude in dB as a function of Hertzian analog fre-
quency, radian digital frequency, and normalized digital frequency.

• Writes the signal to a wave file.

• Reads the signal back in from the wave file.

• Plays the read-in signal through the sound card.

3

%--

% P1a

%

% Make a 2 second digital audio signal that contains a pure

% cosine tone with analog frequency 440 Hz.

% - play the signal through the sound card

% - plot the centered DFT magnitude in dB against

% Hertzian analog freq, radian digital freq,

% and normalized digital freq.

% - Write the signal to a wave file, read it back in, and

% play it through the sound card again.

%

Fs = 44100; % sampling frequency in Hz

N = Fs * 2; % length of the 2 sec signal

n = 0:N-1; % discrete time variable

f_analog = 440; % analog frequency in Hz

w_dig = 2*pi*f_analog/Fs; % radian digital frequency

x = cos(w_dig * n); % the signal

% Normalize samples to the range [-1,1]

% Not really needed here b/c cos is already in this range,

% but done anyway to illustrate how you normalize.

x = x / max(abs(x));

sound(x,Fs,16); % play it through sound card

X = fftshift(fft(x)); % centered DFT

Xmag = abs(X); % centered DFT magnitude

XmagdB = 20*log10(Xmag); % convert to dB

% Plot the centered magnitude against analog frequency

w = -pi:2*pi/N:pi-2*pi/N; % dig rad freq vector

f = w * Fs /(2*pi); % analog freq vector

figure(1);

plot(f,XmagdB);

xlim([-20000 20000]);

title(’Centered DFT Magnitude for 440 Hz Pure Tone’);

xlabel(’analog frequency, Hz’);

ylabel(’dB’);

4

% Plot the centered magnitude against radian digital freq

figure(2);

plot(w,XmagdB);

xlim([-pi pi]);

title(’Centered DFT Magnitude for 440 Hz Pure Tone’);

xlabel(’radian digital frequency \omega’);

ylabel(’dB’);

% Plot against normalized digital frequency

figure(3);

plot(w/pi,XmagdB);

xlim([-1 1]);

title(’Centered DFT Magnitude for 440 Hz Pure Tone’);

xlabel(’normalized digital frequency \omega/\pi’);

ylabel(’dB’);

% wait 3 seconds in case sound card is still busy

pause(3);

audiowrite(’A-440.wav’,x,Fs); % write to wave file

[x2,Fs] = audioread(’A-440.wav’); % read it back in

sound(x2,Fs,16); % play it again Sam!

(a) Type in this code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file. You can also download the m-file from the
course Canvas page under “Files for the Design Project.”

(b) Modify the Matlab code to generate and play a cosine pure tone with an analog
frequency of 5 kHz.

Now we are going to do some filtering. The following Matlab code will design a lowpass
IIR digital Butterworth filter:

Wp = 0.4;

Ws = 0.6;

Rp = 1;

Rs = 60;

[Nf, Wn] = buttord(Wp,Ws,Rp,Rs);

[num,den] = butter(Nf,Wn);

5

The frequency response magnitude is shown in Fig. 1 on the next page. The x-axis is in
normalized digital frequency and the y-axis is in dB. Since |H(ejω)| is even symmetric, we
normally plot it for the non-negative frequencies only.

The parameter Wp specifies the passband edge frequency. For this filter, we set Wp to a
normalized digital frequency of 0.4. This makes the passband go from DC to 0.4π rad/sample.
In the passband, |H(ejω)| ≈ 1 = 0 dB. The parameter Rp specifies the allowable passband
ripple, which is the amount that |H(ejω)| is allowed to deviate from 0 dB in the passband.
For this filter, we set Rp to 1. This means that |H(ejω)| has to be between -1 dB and +1 dB
everywhere in the passband.

The parameter Ws specifies the stopband edge frequency. For this filter, we set Ws to a
normalized digital frequency of 0.6. So the stopband goes from 0.6π rad/sample up to π
rad/sample. The parameter Rs specifies the minimum stopband attenuation. For this filter,
we set Rs to 60 dB. This means that everywhere in the stopband |H(ejω)| has to be below
-60 dB.

The region between Wp and Ws is called the transition band. For this filter, the transition
band goes from 0.4 to 0.6 in units of normalized digital frequency, which is 0.4π to 0.6π
rad/sample.

The main features of the digital Butterworth filter are that it is maximally flat in the
passband, the passband is monotonic (there is no rippling), and the phase is approximately
linear in the passband.

The parameter Nf returned by buttord gives the filter order. This is the highest power
of e−jω that appears in the numerator or denominator of the frequency response H(ejω). It is
also the highest power of z−1 that appears in H(z). The parameter Wn gives the Butterworth
natural frequency, which is the point in the transition band where the frequency response
magnitude has dropped by 3 dB compared to the passband. For this filter, the order is 12.

The vectors num and den returned by butter contain the coefficients for the numerator
and denominator polynomials of H(ejω), which are the same as the numerator and denomi-
nator coefficients of the transfer function H(z).

The Matlab statement to run the filter is y = filter(num,den,x); where x is the input
signal and y is the output signal.

You can also design a highpass digital Butterworth filter like this:

Wp = 0.6;

Ws = 0.4;

Rp = 1;

Rs = 60;

[Nf, Wn] = buttord(Wp,Ws,Rp,Rs);

[num,den] = butter(Nf,Wn,’high’);

Notice that this time Wp > Ws. That is because the stopband is now on the left starting
at DC, followed by the transition band in the middle and the passband on the right. The
frequency response magnitude for this filter is shown in Fig. 2 on the page 8.

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
a

g
n

it
u

d
e

 (
d

B
)

Frequency Response Magnitude |H(e
jω

)|

Figure 1: Lowpass digital Butterworth filter frequency response.

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−250

−200

−150

−100

−50

0

Normalized Frequency (×π rad/sample)

M
a

g
n

it
u

d
e

 (
d

B
)

Frequency Magnitude |X(e
jω

)| (dB)

Figure 2: Highpass digital Butterworth filter frequency response.

8

The parameter Wp again specifies the passband edge frequency, which we set to a normal-
ized digital frequency of 0.6. So the passband goes from 0.6π rad/sample to π rad/sample.
As before, we set Rp to 1, so |H(ejω)| has to be between -1 dB and +1 dB everywhere in the
passband.

We set the stopband edge frequency Ws to a normalized digital frequency of 0.4. So the
stopband goes from DC to 0.4π rad/sample. We set the minimum stopband attenuation
parameter Rs to 60, so |H(ejω)| is below -60 dB everywhere in the stopband.

The transition band lies between the stopband and the passband. For this filter, the
transition band goes from 0.4 to 0.6 in normalized digital frequency, which is 0.4π rad/sample
to 0.6π rad/sample in radian digital frequency.

For any given filtering problem, we usually want to use the smallest filter order Nf that we
can. A higher filter order means more delay, more complexity, and increased implementation
cost. It also means that the frequency response phase argH(ejω) will be more nonlinear,
which is undesirable for digital audio. Here are the factors that increase the filter order:

• for a given passband ripple Rp and minimum stopband attenuation Rs, making the
width of the transition band smaller will increase the order.

• for a given transition bandwidth, decreasing Rp or increasing Rs will increase the order.

Now, having Rp bigger than 1 dB could distort the signal in the filter passband, which is bad.
So, for a given filtering problem, we generally want to use the widest transition bandwidth
|Ws− Wp| and the smallest stopband attenuation Rs that will do the job.

2. Consider the Matlab code below, which does the following:

• Makes the signal x1 a 250 Hz pure tone that lasts for 4 sec.

• Plays x1 through the sound card.

• Makes the signal x2 a swept frequency chirp that goes from 1 kHz to 3 kHz. The
details of how I made this chirp signal are not really important to you for this
project.

– But in case you are interested, here they are: human hearing perceives the
signal x(t) = cos[ϕ(t)] as a tone with a time-varying frequency ϕ′(t). The
quantity ϕ′(t) is called the instantaneous frequency. For a chirp, ϕ′(t) changes
linearly with time, which means that the instantaneous phase ϕ(t) has to be
quadratic in time. A digital audio chirp signal is given by x[n] = cos(ϕ[n]),
where the instantaneous phase ϕ[n] is quadratic in n. So I set ϕ[n] = an2 +
bn + c. I set the initial phase offset c to zero to get ϕ[n] = an2 + bn and
ϕ′[n] = 2an + b. At n = 0, I wanted the analog starting frequency of the
chirp to be 1 kHz, which is a radian digital frequency of ω1 = 2π × 1000/Fs.
At n = 0, this gave me ϕ′[0] = b = ω1. At n = N − 1, I wanted the
analog ending frequency of the chirp to be 3 kHz, which is a radian digital
frequency of ω2 = 2π × 3000/Fs. At n = N − 1, this gave me ϕ′[N − 1] =

9

2a(N − 1) + ω1 = ω2, or a = ω2−ω1

2(N−1) . So the desired digital chirp signal is

given by x[n] = cos(ϕ[n]) where ϕ[n] = ω2−ω1

2(N−1)n
2 + ω1n.

• Plays x2 through the sound card.

• Makes the signal x3 = x1 + x2.

• Normalizes x3 to the range [-1, 1] and plays it through the sound card.

• Designs a lowpass digital Butterworth filter to process the signal x3 by keeping
the 250 Hz pure tone but filtering out the chirp. I set the passband edge frequency
at 250 Hz, which is a radian digital frequency of 2π× 250/Fs. To get the value of
Wp for buttord, I divided this by π to convert it to normalized digital frequency.
I set the stopband edge frequency to the starting frequency of the chirp, which
is 1 kHz in analog frequency and 2π × 1000/Fs in radian digital frequency. To
get the value of Ws for buttord, I divided this by π to convert it to normalized
digital frequency. These values of Wp and Ws place the 250 Hz pure tone x1 in the
filter passband and the chirp signal x2 entirely in the filter stopband. I set the
maximum passband ripple Rp to 1 dB and the minimum stopband attenuation Rs

to 60 dB. The lowpass filtered signal is called y1.

• Calls the Matlab fvtool and freqz functions to display the filter frequency re-
sponse.

• Plays the lowpass filtered signal y1 through the sound card.

• Designs a highpass digital Butterworth filter to process the signal x3 by keeping
the chirp signal but filtering out the 250 Hz pure tone. I set the stopband edge
frequency at 250 Hz, which is a radian digital frequency of 2π × 250/Fs. For the
buttord parameter Ws, I divided this by π to convert it to normalized digital
frequency. This places the pure tone in the filter stopband. I set the passband
edge frequency at the starting frequency of the chirp, or 1 kHz, which is a radian
digital frequency of 2π × 1000/Fs. For the buttord parameter Wp, I divided this
by π to convert it to normalized digital frequency. This places the chirp signal
entirely in the filter passband. I used 1 dB for the maximum passband ripple
Rp and 60 dB for the minimum stopband attenuation Rs. The highpass filtered
signal is called y2.

• Adds the highpass filter to fvtool and calls freqz to plot the frequency response.

• Plays the highpass filtered signal y2 through the sound card.

10

%--

% P2a

%

% Make some digital audio signals and demonstrate filtering.

% All signals are 4 seconds in duration.

% - Make x1 a 250 Hz pure tone.

% - Play x1 through the sound card.

% - Make x2 a swept frequency chirp from 1 kHz to 3 kHz.

% - Play x2 through the sound card.

% - Make x3 = x1 + x2.

% - Play x3 through the sound card.

% - Apply a lowpass digital Butterworth filter to x3 to

% keep the pure tone and reject the chirp.

% - Play the filtered signal through the sound card.

% - Apply a highpass digital Butterworth filter to x3 to

% keep the chirp and reject the pure tone.

% - Play the filtered signal through the sound card.

%

Fs = 44100; % sampling frequency in Hz

N = Fs * 4; % length of the 4 sec signal

n = 0:N-1; % discrete time variable

% Make x1 a 250 Hz pure tone

f_analog = 250; % pure tone analog frequency

w_dig = 2*pi*f_analog/Fs; % radian digital frequency

x1 = cos(w_dig * n); % the pure tone

sound(x1,Fs,16); % play it through sound card

pause(5); % wait for sound card to clear

% Make x2 a chirp. Sweep analog freq from 1 kHz to 3 kHz

f_start_analog = 1000;

w_start_dig = 2*pi*f_start_analog/Fs;

f_stop_analog = 3000;

w_stop_dig = 2*pi*f_stop_analog/Fs;

phi = (w_stop_dig-w_start_dig)/(2*(N-1))*(n.*n) + w_start_dig*n;

x2 = cos(phi);

sound(x2,Fs,16); % play it through sound card

pause(5); % wait for sound card to clear

% Add the two signals

x3 = x1 + x2;

11

x3 = x3 / max(abs(x3)); % normalize the range to [-1,1]

sound(x3,Fs,16); % play it through sound card

pause(5); % wait for sound card to clear

% Use a lowpass digital Butterworth filter to keep the 250 Hz

% pure tone and reject the chirp.

Wp = w_dig/pi; % normalized passband edge freq

Ws = w_start_dig/pi; % normalized stopband edge freq

Rp = 1; % max passband ripple

Rs = 60; % min stopband attenuation

[Nf, Wn] = buttord(Wp,Ws,Rp,Rs); % design filter order

[num,den] = butter(Nf,Wn); % design the filter

h=fvtool(num,den); % show frequency response

figure(2);

freqz(num,den,1024); % plot frequency response

title(’Lowpass Frequency Response’);

y1 = filter(num,den,x3); % apply the filter

y1 = y1 / max(abs(y1)); % normalize filtered signal

sound(y1,Fs,16); % play it through sound card

pause(5); % wait for sound card to clear

% Use a highpass digital Butterworth filter to keep the chirp

% and reject the 250 Hz pure tone.

Ws = w_dig/pi; % normalized stopband edge freq

Wp = w_start_dig/pi; % normalized passband edge freq

Rp = 1; % max passband ripple

Rs = 60; % min stopband attenuation

[Nf, Wn] = buttord(Wp,Ws,Rp,Rs); % design filter order

[num2,den2] = butter(Nf,Wn,’high’); % design the filter

Hd = dfilt.df1(num2,den2); % make filter object

addfilter(h,Hd); % add filter 2 to fvtool

figure(3);

freqz(num2,den2,1024); % plot frequency response

title(’ Highpass Frequency Response’);

y2 = filter(num2,den2,x3); % apply the filter

y2 = y2 / max(abs(y2)); % normalize filtered signal

sound(y2,Fs,16); % play it through sound card

12

(a) Type in this code and run it. You can type it in line-by-line at the command
prompt or you can create an m-file. You can also download it from the course
Canvas page under “Files for the Design Project.”

(b) Modify the Matlab code to do the following:

• Make x1 a four second cosine pure tone with analog frequency 1 kHz and play
it through the sound card.

• Make x2 a four second cosine pure tone with analog frequency 3 kHz and play
it through the sound card.

• Make x3 = x1 + x2 and play x3 through the sound card.

• Apply a lowpass digital Butterworth filter to x3 to keep the 1 kHz pure tone
but filter out the 3 kHz pure tone. You can use 1 dB for the maximum
passband ripple Rp and 60 dB for the minimum stopband attenuation Rs.
You will need to set the passband edge frequency ≥ 1 kHz. Note that this
is 2π × 1000/Fs in radian digital frequency. Divide that by π to get the
minimum value for the normalized digital passband edge frequency Wp. You
will need to set the stopband edge frequency ≤ 3 kHz. This is 2π × 3000/Fs
in radian digital frequency. Divide that by π to get the maximum value for
the normalized digital passband edge frequency Ws.

• Play the lowpass filtered signal through the sound card.

3. Get the wave files noisysig.wav and noisesamp.wav from the course Canvas page.
You will find them under “Files for the Design Project.” The file noisysig.wav con-
tains a digital audio signal that has been corrupted by additive noise. The digital
audio signal in noisesamp.wav is a sample of just the noise (without any signal). In
this problem, you will design a digital Butterworth filter to remove the noise from the
signal in noisysig.wav.

(a) Use the Matlab audioread function to read each signal. Use Matlab to play
the noisy signal through the sound card. You can also play the file using any
wave-capable media player like Windows Media Player or VLC.

(b) Use the Matlab length function to find the length of each signal and plot the
centered DFT magnitude in dB as a function of normalized digital frequency.

(c) Design a lowpass digital Butterworth filter to remove the noise. You can use 1
dB for the maximum passband ripple Rp and 60 dB for the minimum stopband
attenuation Rs. Determine appropriate normalized digital frequency values for
the passband edge frequency Wp and stopband edge frequency Ws by analyzing
the centered DFT magnitude plots. Note that the centered DFT magnitude plot
for the file noisesamp.wav will show you the frequency spectrum for the noise
only, whereas the plot for the file noisysig.wav will show you the frequency
spectrum for the combined signal plus noise. You must design Wp and Ws so that
the filter order Nf is twelve or less. Briefly explain how you chose the values for
Wp and Ws.

13

(d) Call the Matlab fvtool and freqz functions to plot the filter frequency response
like we did in Problem 2.

(e) Apply your filter to remove the noise. Play the filtered signal through the sound
card and use the Matlab audiowrite function to save it to a wave file. Name
this wave file filteredsig.wav. Upload your filteredsig.wav file to the course
Canvas page along with your WORD or PDF solution file.

14

