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Name: SOLUTION (Havlicek) 

Section: 

Laboratory Exercise 4 

LINEAR, TIME-INVARIANT DISCRETE-TIME SYSTEMS:  
FREQUENCY-DOMAIN REPRESENTATIONS 

4.1   TRANSFER FUNCTION AND FREQUENCY RESPONSE 

Project 4.1  Transfer Function Analysis 

Answers: 

Q4.1   The modified Program P3_1 to compute and plot the magnitude and phase spectra of a moving 

average filter of Eq. (2.13) for 0      2 is shown below: 
 
% Program Q4_1 
% Frequency response of the causal M-point averager of Eq. (2.13)  
clear; 
% User specifies filter length 
M = input('Enter the filter length M: '); 
% Compute the frequency samples of the DTFT 
w = 0:2*pi/1023:2*pi; 
num = (1/M)*ones(1,M); 
den = [1]; 
% Compute and plot the DTFT 
h = freqz(num, den, w); 
subplot(2,1,1) 
plot(w/pi,abs(h));grid 
title('Magnitude Spectrum |H(e^{j\omega})|') 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 
subplot(2,1,2) 
plot(w/pi,angle(h));grid 
title('Phase Spectrum arg[H(e^{j\omega})]') 
xlabel('\omega /\pi'); 
ylabel('Phase in radians'); 
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This program was run for the following three different values of M and the plots of the corresponding 
frequency responses are shown below: 
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M=10 
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  The types of symmetries exhibited by the magnitude and phase spectra are due to -  The 
impulse response is real.  Therefore, the frequency response is periodically conjugate 
symmetric, the magnitude response is periodically even symmetric, and the phase 
response is periodically odd symmetric. 

 The type of filter represented by the moving average filter is -  This is a lowpass filter. 

 The results of Question Q2.1 can now be explained as follows – It is a lowpass filter.  The 
input was a sum of two sinusoids, one high frequency and one low frequency.  The 
particular results depend on the filter length M, but the general result is that the higher 
frequency sinusoidal input component is attenuated more than the lower frequency 
sinusoidal input component. 
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Q4.2 The plot of the frequency response of the causal LTI discrete-time system of Question Q4.2 
obtained using the modified program is given below: 
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 The type of filter represented by this transfer function is -  Bandpass 

Q4.3 The plot of the frequency response of the causal LTI discrete-time system of Question Q4.3 
obtained using the modified program is given below: 
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 The type of filter represented by this transfer function is -  Bandpass 

 The difference between the two filters of Questions 4.2 and 4.3 is -  The magnitude 
responses are the same.  The phase responses might look very different to you at first, 
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but they are actually similar.  The phase response of the second filter exhibits a branch 
cut of the arctangent function at normalized frequency 0.4, which is right in the middle 
of the passband.  However, the unwrapped phase would not show this discontinuity.  
Both filters have an approximately linear phase in the passband and their group delays 
are approximately the negatives of one another.  However, the two filters have different 
poles.  The poles of the first filter are INSIDE the unit circle, whereas those of the 
second filer are OUTSIDE the unit circle.  Thus, in a causal implementation, the first 
filter would be BIBO STABLE, whereas the second filter would be UNSTABLE.  
Therefore, in most applications the second filter would be preferable. 

 I shall choose the filter of Question Q4._36__ for the following reason -  It can be both causal 
and BIBO stable, whereas the filter of Q4.37 cannot be both because the two poles are 
both outside of the unit circle. 

Q4.4 The group delay of the filter specified in Question Q4.4 and obtained using the function 
grpdelay is shown below: 

 

 From this plot we make the following observations:  Usually, it is desirable for a filer to 
have an approximately linear phase in the passband, which is the same thing as an 
approximately constant group delay in the passband.  This filter is notch filter; it is a 
bandstop filter with a narrow stopband centered at a normalized frequency just below 
0.3.  From the graph above, we see that the group delay is approximately constant over 
much of the passband. 

 

 

Q4.5 The plots of the first 100 samples of the impulse responses of the two filters  of Questions 4.2 
and 4.3 obtained using the program developed in Question Q3.50 are shown below: 
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 From these plots we make the following observations:  These plots generated by impz give 
the impulse response for a causal realization of H(z).  As we observed in Q4.3, the 
causal filter with H(z) given in (4.36) is BIBO stable, implying that h[n] is absolutely 
summable, and we see alternation and exponential decay in the impulse response.  On 
the other hand, the causal filer with H(z) given in (4.37) has poles outside the unit 
circle and is unstable.  Not surprisingly, corresponding h[n] shown above displays 
exponential growth with n. 

Q4.6 The pole-zero plots of the two filters of Questions 4.2 and 4.3 developed using zplane are 
shown below: 
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 From these plots we make the following observations:  As we have said repeatedly by this 
time, the upper figure shows that the filter in (4.36) has poles inside the unit circle and 
therefore it’s causal realization is stable.  The lower figure shows that the filter in 
(4.37) has poles outside the unit circle; its causal realization is unstable. 

 

4.2   TYPES OF TRANSFER FUNCTIONS 

Project 4.2 Filters 
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 A copy of Program P4_1 is given below: 
 
% Program P4_1 
% Impulse Response of Truncated Ideal Lowpass Filter 
clf; 
fc = 0.25; 
n = [-6.5:1:6.5]; 
y = 2*fc*sinc(2*fc*n);k = n+6.5; 
stem(k,y);title('N = 13');axis([0 13 -0.2 0.6]); 
xlabel('Time index n');ylabel('Amplitude');grid; 

Answers: 

Q4.7 The plot of the impulse response of the approximation to the ideal lowpass filter obtained using 
Program P4_1 is shown below:   
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 The length of the FIR lowpass filter is -  14 
 The statement in Program P4_1 determining the filter length is -   

n = [-6.5:1:6.5]; 
 
The parameter controlling the cutoff frequency is -  fc = 0.25; 

 

 

Q4.8 The required modifications to Program P4_1 to compute and plot the impulse response of the 

FIR lowpass filter of Project 4.2 with a length of 20 and a cutoff frequency of c = 0.45 are 

as indicated below: 
 
% Program Q4_8 
% Impulse Response of Truncated Ideal Lowpass Filter 
clf; 
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fc = 0.45; 
n = [-9.5:1:9.5]; 
y = 2*fc*sinc(2*fc*n);k = n+9.5; 
stem(k,y);title('N = 20');axis([0 19 -0.2 0.7]); 
xlabel('Time index n');ylabel('Amplitude');grid; 

 The plot generated by running the modified program is given below: 
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Q4.9 The required modifications to Program P4_1 to compute and plot the impulse response of the 

FIR lowpass filter of Project 4.2 with a length of 15 and a cutoff frequency of c = 0.65 are 

as indicated below: 
 
% Program Q4_9 
% Impulse Response of Truncated Ideal Lowpass Filter 
clf; 
fc = 0.65; 
n = [-7.0:1:7.0]; 
y = 2*fc*sinc(2*fc*n);k = n+7.0; 
stem(k,y);title('N = 14');axis([0 14 -0.4 1.4]); 
xlabel('Time index n');ylabel('Amplitude');grid; 

  

 

 

The plot generated by running the modified program is given below: 
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Q4.10  The MATLAB program to compute and plot the amplitude response of the FIR lowpass filter of 
Project 4.2 is given below:   

 
% Program Q4_10 
% Compute and plot the amplitude response 
% of Truncated Ideal Lowpass Filter 
clear; 
% Get "N" from the user command line 
N = input('Enter the filter time shift N: '); 
% compute the magnitude spectrum 
No2 = N/2; 
fc = 0.25; 
n = [-No2:1:No2]; 
y = 2*fc*sinc(2*fc*n); 
w = 0:pi/511:pi; 
h = freqz(y, [1], w); 
plot(w/pi,abs(h)); 
grid; 
title(strcat('|H(e^{j\omega})|, N=',num2str(N))); 
xlabel('\omega /\pi'); 
ylabel('Amplitude'); 

  

 

 

 

 

Plots of the amplitude response of the lowpass filter for several values of N are shown below: 
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 From these plots we can make the following observations – As the filter length increases, 
the transition from passband to stopband becomes steeper; i.e., the transition band 
becomes more narrow.  We also see the Gibb’s phenomena:  as the filter order 
increases, the amplitude response converges towards the ideal lowpass characteristic.  
However, the convergence is only in weak sense – pointwise convergence.  The peak 
ripple at the transition band edges does not decrease despite the increases in order. 
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 A copy of Program P4_2 is given below: 
  
% Program P4_2 
% Gain Response of a Moving Average Lowpass Filter 
clf; 
M = 2; 
num = ones(1,M)/M; 
[g,w] = gain(num,1); 
plot(w/pi,g);grid 
axis([0 1 -50 0.5]) 
xlabel('\omega /\pi');ylabel('Gain in dB'); 
title(['M = ', num2str(M)]) 

Answers: 

Q4.11  A plot of the gain response of a length-2 moving average filter obtained using Program P4_2 is 
shown below: 
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 From the plot it can be seen that the 3-dB cutoff frequency is at - /2 rad/sample. 

 

 

 

 

 

 

Q4.12  The required modifications to Program P4_2 to compute and plot the gain response of a 
cascade of K length-2 moving average filters are given below:  
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% Program Q4_12 
% Gain Response of a cascade connection of K  
% two-point Moving Average Lowpass Filters 
clear; 
K = input('Enter the number of sections K: '); 
Hz = [1]; 
% find the numerator for H(z) = cascade of K sections 
for i=1:K; 
  Hz = conv(Hz,[1 1]); 
end; 
Hz = (0.5)^K * Hz; 
% Convert numerator to dB 
[g,w] = gain(Hz,1); 
% make a horizontal line on the plot at -3 dB 
ThreedB = -3*ones(1,length(g)); 
% make a vertical line on the plot at the 
%  theoretical 3dB frequency 
t1 = 2*acos((0.5)^(1/(2*K)))*ones(1,512)/pi; 
t2 = -50:50.5/511:0.5; 
plot(w/pi,g,w/pi,ThreedB,t1,t2);grid; 
axis([0 1 -50 0.5]) 
xlabel('\omega /\pi');ylabel('Gain in dB'); 
title(['K = ',num2str(K),'; Theoretical \omega_{c} = ',num2str(t1(1))]); 

 The plot of the gain response for a cascade of 3 sections obtained using the modified program 
is shown below: 
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 From the plot it can be seen that the 3-dB cutoff frequency of the cascade is at  - 0.30015 

 

Q4.13  The required modifications to Program P4_2 to compute and plot the gain response of the 
highpass filter of Eq. (4.42) are given below: 
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% Program Q4_13 
% Gain Response of Highpass Filter (4.42) 
clear; 
M = input('Enter the filter length M: '); 
n = 0:M-1; 
num = (-1).^n .* ones(1,M)/M; 
[g,w] = gain(num,1); 
plot(w/pi,g);grid; 
axis([0 1 -50 0.5]); 
xlabel('\omega /\pi');ylabel('Gain in dB'); 
title(['M = ', num2str(M)]); 

 The plot of the gain response for M = 5 obtained using the modified program is shown below: 
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 From the plot we can see that the 3-dB cutoff frequency is at – approximately 0.8196 

Q4.14  From Eq. (4.16) for a 3-dB cutoff frequency c at 0.45 we obtain  = 0.078702 

 Substituting this value of  in Eqs. (4.15) and (4.17) we arrive at the transfer function of the 
first-order IIR lowpass and highpass filters, respectively, given by 
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 The plots of their gain responses obtained using MATLAB are shown below: 
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 From these plots we observe that the designed filters __DO___ meet the specifications. 

 

 

 

 A plot of the magnitude response of the sum HLP(z) + HHP(z) obtained using MATLAB is 

given below: 
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 From this plot we observe that the two filters are – Allpass Complementary 

 A plot of the sum of the square-magnitude responses of HLP(z) and HHP(z) obtained using 

MATLAB is given below: 
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 From this plot we observe that the two filters are – Power Complementary 

 

Q4.15  From Eq. (4.24), we get substituting K = 10, B = 1.8660660 
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 Substituting this value of B and c = 0.3 in Eq. (4.23) we obtain  = -0.3107925 

 Using this value of  in Eq. (4.22) we arrive at the transfer function of the cascade of 10 IIR 
lowpass filters as 

  
 
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1010 6 11

,10 101 1

23.61566 10 1 z1– 1 z
( )

2 1– z 1+0.31079z
LPH z
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   
    

 Substituting c = 0.3  in Eq. (4.16) we obtain  = 0.3249197 

 Using this value of  in Eq. (4.15) we arrive at the transfer function of a first-order IIR lowpass 
filter 
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 The gain responses of HLP,10(z) and HLP,1(z) plotted using MATLAB are shown below: 
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 From these plots we make the following observation – The series connection of 10 1st order 
IIR lowpass sections achieves a sharper transition band than the single first order filter 
designed for the same 3 dB cutoff frequency. 

Q4.16  Substituting o = 0.61 in Eq. (4.19) we get   cos(0.61)   -0.3387 

 Substituting  
  
3dB  = 0.15 in Eq. (4.20) we get (1  2)cos(0.15)  2  0,  whose 

solution yields  = 1.6319 and  = 0.6128. . 

 Substituting the value of  and the first value of  in Eq. (4.18) we arrive at the transfer 
function of the IIR bandpass transfer function 
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 Substituting the value of  and the second value of  in Eq. (4.18) we arrive at the transfer 
function of the IIR bandpass transfer function 

   HBP,2(z) = 
 2
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 Next using the zplane command we find the pole locations of HBP,1(z) and HBP,2(z) from 

which we conclude that the stable transfer function HBP(z) is given by – HBP,2(z). 
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P-Z plot for HBP,1(z) 
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P-Z plot for HBP,2(z) 
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 The plot of the gain response of the stable transfer function HBP(z) obtained using MATLAB 

is shown below: 
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 Using the same value of  and  in Eq. (4.21) we next obtain the transfer function of a stable 
IIR bandstop filter as 

   HBS(z) = 
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 The plot of the gain response of the transfer function HBS(z) obtained using MATLAB is 

shown below: 
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From these plots we observe that the designed filters DO meet the specifications. 

 A plot of the magnitude response of the sum HBP(z) + HBS(z) obtained using MATLAB is 

given below: 
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 From this plot we observe that the two filters are – Allpass Complementary 
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A plot of the sum of the square-magnitude responses of HBP(z) and HBS(z) obtained using 

MATLAB is given below: 
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 From this plot we observe that the two filters are  - Power Complementary 

Q4.17  The transfer function of a comb filter derived from the prototype FIR lowpass filter of Eq. (4.40) 
is given by  

   G(z) = H0(zL) = 0.5 0.5 Lz  

 Plots of the magnitude response of the above comb filter for the following values of L are 
shown below: 
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 From these plots we observe that the comb filter has _L_ notches at k = (2k+1)/L and   L  

peaks at k = 2k/L, where k = 0, 1, . . ., L-1. 

Q4.18  The transfer function of a comb filter derived from the prototype FIR highpass filter of Eq. (4.42) 
with M = 2 is given by  

   G(z) = H1(zL) = 0.5 0.5 Lz  

 Plots of the magnitude response of the above comb filter for the following values of L are 
shown below –  
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 From these plots we observe that the comb filter has _L_ notches at k = _2k/L  and 

_L_ peaks at k = (2k+1)/L. 
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Q4.19  A copy of Program P4_3 is given below: 
 
% Program P4_3 
% Zero Locations of Linear Phase FIR Filters 
clf; 
b = [1 -8.5 30.5 -63]; 
num1 = [b 81 fliplr(b)]; 
num2 = [b 81 81 fliplr(b)]; 
num3 = [b 0 -fliplr(b)]; 
num4 = [b 81 -81 -fliplr(b)]; 
n1 = 0:length(num1)-1; 
n2 = 0:length(num2)-1; 
subplot(2,2,1); stem(n1,num1); 
xlabel('Time index n');ylabel('Amplitude'); grid; 
title('Type 1 FIR Filter'); 
subplot(2,2,2); stem(n2,num2); 
xlabel('Time index n');ylabel('Amplitude'); grid; 
title('Type 2 FIR Filter'); 
subplot(2,2,3); stem(n1,num3); 
xlabel('Time index n');ylabel('Amplitude'); grid; 
title('Type 3 FIR Filter'); 
subplot(2,2,4); stem(n2,num4); 
xlabel('Time index n');ylabel('Amplitude'); grid; 
title('Type 4 FIR Filter'); 
pause 
subplot(2,2,1); zplane(num1,1); 
title('Type 1 FIR Filter'); 
subplot(2,2,2); zplane(num2,1); 
title('Type 2 FIR Filter'); 
subplot(2,2,3); zplane(num3,1); 
title('Type 3 FIR Filter'); 
subplot(2,2,4); zplane(num4,1); 
title('Type 4 FIR Filter'); 
disp('Zeros of Type 1 FIR Filter are'); 
disp(roots(num1)); 
disp('Zeros of Type 2 FIR Filter are'); 
disp(roots(num2)); 
disp('Zeros of Type 3 FIR Filter are'); 
disp(roots(num3)); 
disp('Zeros of Type 4 FIR Filter are'); 
disp(roots(num4)); 
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The plots of the impulse responses of the four FIR filters generated by running Program P4_3 
are given below: 
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 From the plots we make the following observations: 

 Filter #1 is of length 9 with a symmetric impulse response and is therefore a Type 1 linear-
phase FIR filter.  

 Filter #2 is of length 10 with a symmetric impulse response and is therefore a Type 2 linear-
phase FIR filter.  

 Filter #3 is of length 9 with an antisymmetric impulse response and is therefore a Type 3 
linear-phase FIR filter.  

 Filter #4 is of length 10 with an antisymmetric impulse response and is therefore a Type 4 
linear-phase FIR filter.  

 From the zeros of these filters generated by Program P4_3 we observe that: 

 Filter #1 has zeros at z =   2.9744,    2.0888, 0.9790 + 1.4110i, 0.9790 - 1.4110i,                   
0.3319 + 0.4784i,  0.3319 - 0.4784i,  0.4787,  0.3362 

 Filter #2 has zeros at z  = 3.7585 + 1.5147i,  3.7585 - 1.5147i,  0.6733 + 2.6623i,    
0.6733 - 2.6623i,  -1.0000,  0.0893 + 0.3530i, 0.0893 - 0.3530i,  0.2289 + 0.0922i,   
0.2289 - 0.0922i 

 Filter #3 has zeros at z  = 4.7627,  1.6279 + 3.0565i, 1 .6279 - 3.0565i,  -1.0000,    
1.0000,  0.1357 + 0.2549i,  0.1357 - 0.2549i,  0.2100 
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Filter #4 has zeros at z  = 3.4139,  1.6541 + 1.5813i,  1.6541 - 1.5813i,  
-0.0733 + 0.9973i,  -0.0733 - 0.9973i,  1.0000,  0.3159 + 0.3020i, 0.3159 - 0.3020i, 
0.2929 
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 Plots of the phase response of each of these filters obtained using MATLAB are shown below: 

Note: These are the UNWRAPPED phases 
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 From these plots we conclude that each of these filters have LINEAR (or in the case of the 
Type 4, generalized LINEAR) phase.   

 The group delay of Filter # 1 is - 4.0000 
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 The group delay of Filter # 2 is - 4.5000 

 The group delay of Filter # 3 is - 4 

 The group delay of Filter # 4 is - 4.5000 

Q4.20  The plots of the impulse responses of the four FIR filters generated by running Program P4_3 
are given below: 
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 From the plots we make the following observations: 

 Filter #1 is of length 9 with a symmetric impulse response and is therefore a Type 1 linear-
phase FIR filter.  

 Filter #2 is of length 10 with a symmetric impulse response and is therefore a Type 2 linear-
phase FIR filter.  

 Filter #3 is of length 9 with an antisymmetric impulse response and is therefore a Type 3 
linear-phase FIR filter.  

 Filter #4 is of length 10 with an antisymmetric impulse response and is therefore a Type 4 
linear-phase FIR filter.  

 From the zeros of these filters generated by Program P4_3 we observe that: 

 Filter #1 has zeros at z =  
   2.3273 + 2.0140i 
   2.3273 - 2.0140i 
  -1.2659 + 2.0135i 
  -1.2659 - 2.0135i 
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  -0.2238 + 0.3559i 
  -0.2238 - 0.3559i 
   0.2457 + 0.2126i 
   0.2457 - 0.2126i 

 Filter #2 has zeros at z  =  
   2.5270 + 2.0392i 
   2.5270 - 2.0392i 
  -1.0101 + 2.1930i 
  -1.0101 - 2.1930i 
  -1.0000           
  -0.1733 + 0.3762i 
  -0.1733 - 0.3762i 
   0.2397 + 0.1934i 
   0.2397 - 0.1934i 

 Filter #3 has zeros at z  =  
  -1.0000           
   0.2602 + 1.2263i 
   0.2602 - 1.2263i 
   1.0000           
   0.6576 + 0.7534i 
   0.6576 - 0.7534i 
   0.1655 + 0.7803i 
   0.1655 - 0.7803i 

 Filter #4 has zeros at z  =  
   2.0841 + 2.0565i 
   2.0841 - 2.0565i 
  -1.5032 + 1.9960i 
  -1.5032 - 1.9960i 
   1.0000           
  -0.2408 + 0.3197i 
  -0.2408 - 0.3197i 
   0.2431 + 0.2399i 
   0.2431 - 0.2399i 

 Plots of the phase response of each of these filters obtained using MATLAB are shown below: 
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 From these plots we conclude that each of these filters have LINEAR, or in the case of the 
Type 3 filter, Generalized LINEAR phase.   

 The group delay of Filter # 1 is - 4.0000 

 The group delay of Filter # 2 is - 4.5000 

 The group delay of Filter # 3 is - 4.0000 

 The group delay of Filter # 4 is - 4.5000 
 

Answers: 

Q4.21  A plot of the magnitude response of H1(z) obtained using MATLAB is shown below: 
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 From this plot we observe that the magnitude response has a maximum at  = 0.5049       
with a value = 0.3289 

 Using zplane we observe that the poles of H1(z) are OUTSIDE the unit circle at 

2z   and 3.z    Hence the transfer function IS NOT stable. 

 Since the maximum value of the magnitude response of H1(z) is =        , we scale H1(z) by 
_____ and arrive at a bounded-real transfer function 

This question doesn’t make any sense.  Since H1(z)  has poles outside the unit circle, it 
cannot be made into a bounded real transfer function by simple scaling (the original 
author of labex4.doc is confused here).   To obtain a bounded real transfer function 
with the same magnitude as H1(z), we have to factor 1 2( ) ( ) ( )APH z H z H z  were 

( )APH z  is allpass and 2 ( )H z  has all poles inside the unit circle.  Recall that the transfer 

function for a first-order allpass section is given by 1 1( ) (1 ).z z       H1(z) may be 
factored as follows: 
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Multiplying out on top and bottom, we have 
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Using the Matlab freqz function, you can easily verify that 2 ( )H z has the same 

magnitude response as 1( )H z , but is a bounded real transfer function.  You may also 

use freqz to easily verify that ( )APH z  is allpass. 

. 

Q4.22  A plot of the magnitude response of G1(z) obtained using MATLAB is shown below:  NOTE: 
the errata explain that the factor 1.5 should be deleted from the right hand side of 
(4.44). 
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 From this plot we observe that the magnitude response has a maximum at  = 0.4599      
with a value = 1.7854 

 Using zplane we observe that the poles of G1(z) are INSIDE the unit circle and hence the 

transfer function IS stable. 
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 Since the maximum value of the magnitude response of G1(z) is =   1.7854, we scale G1(z) 
by 1/1.7854 and arrive at a bounded-real transfer function 

   G2(z) = 
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4.3   STABILITY TEST 

 A copy of Program P4_4 is given below: 
 
% Program P4_4 
% Stability Test 
clf; 
den = input('Denominator coefficients = '); 
ki = poly2rc(den); 
disp('Stability test parameters are'); 
disp(ki); 
 

 

Answers: 

Q4.23  The pole-zero plots of H1(z) and H2(z) obtained using zplane are shown below: 
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 From the above pole-zero plots we observe that – It appears that 1( )H z  is stable and 

2 ( )H z  is unstable.  This can be confirmed directly with residuez. 

Q4.24  Using Program P4_4 we tested the stability of H1(z) and arrive at the following stability test 

parameters {ki}:     -0.9989,  0.8500 

 From these parameters we conclude that H1(z) is STABLE . 

 Using Program P4_4 we tested the stability of H2(z) and arrive at the following stability test 

parameters {ki}:  -1.0005,  0.8500 

 From these parameters we conclude that H2(z) is  UNSTABLE . 

Q4.25   Using Program P4_4 we tested the root locations of D(z) and arrive at the following stability test 
parameters {ki}: 
    0.9630 
    0.8726 
    0.6225 
    0.2346 
    0.0313 
 

 From these parameters we conclude that all roots of D(z) are INSIDE the unit circle. 
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Q4.26 Using Program P4_4 we tested the root locations of D(z) and arrive at the following stability test 
parameters {ki}: 
   -0.6087 
    0.7958 
    0.6742 
    0.5938 
    0.6000 

 From these parameters we conclude that all roots of D(z) are INSIDE the unit circle. 

Date: 25 October 2007           Signature: SOLUTION (Havlicek) 


