Name: SOLUTION

Section:

Laboratory Exercise 6

DIGITAL FILTER STRUCTURES

6.1 REALIZATION OF FIR TRANSFER FUNCTIONS
Project 6.1 Cascade Realization

Note: program P6_1.m cannot be called directly as suggested in Q6.1 below. This is because tf2zp
requires the length of the numerator and denominator polynomials to be the same. Thus, it is necessary
to MODIFY P6_1.m as shown below.

A copy of the MODIFIED Program P6_1 is given below:

% Program P6_1A

% Conversion of a rational transfer function

» to its Factored form.

» MODIFIED to make the numerator and denominator coefficient vectors
% the same length for calling tf2zp.

num = input(“Numerator coefficient vector = ");

den = input("Denominator coefficient vector = );

[b,a] = eqtflength(num,den); % make lengths equal

[z.p.K] = tf2zp(b,a);

sos = zp2sos(z,p,k)

XX

Answers:

Q6.1 By running Program P6_1 withnum=[2 10 23 34 31 16 4]and den =[1] we arrive at
the following second-order factors:

h[0] =2
ﬁn =3 ﬂ21 =2
Bp=1 B =2

By =1 By =05
In other words, with regards to Eq. (6.3) on p. 92 of the Lab Manual, we have

H,(2) =2(1+32" +227%)(1+2 " +227°)(1+ 21 +0527)



The block-diagram of the cascade realization obtained from these factors is given below:
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H,(z) is NOT a linear-phase transfer function, because the coefficients do not have the
required symmetry.

Q6.2 By running Program P6_1 withnum=[6 31 74 102 74 31 6]andden =[1] we arrive at
the following second-order factors:

h[0]=6
15 B
ﬂu - E ﬂ21 -
ﬂlz =2 ﬂzz =3
1
ﬂla 3 :323 g

The block-diagram of the cascade realization obtained from these factors is given below:
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H,(z) is a Type | linear-phase transfer function with odd length and even symmetry.



The block-diagram of the cascade realization of H,(z) with only 4 multipliers is shown below:
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6.2 REALIZATION OF IIR TRANSFER FUNCTIONS
Project 6.2 Cascade Realization

Answers:

Q6.3 By running Program P6_1 withnum=[3 8 12 7 2 -2]landden=[16 24 24 14 5 1]
we arrive at the following second-order factors:

The result of running the modified program P6_1 is the following:

sos =
0.1875 -0.0625 0 1.0000 0.5000 0
1.0000 2.0000 2.0000 1.0000 0.5000 0.2500

1.0000 1.0000 1.0000 1.0000 0.5000 0.5000

In terms of the parameters p,, a,, and g, given in Eq. (6.8) of the Lab Manual, this
corresponds to the following:

Po=—%
1
Pu=—= Pn=0 ay, :E ay, =0

1
Bn=2 P =2 a, :E Oy =



The block-diagram of the cascade realization obtained from these factors is given below:
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Q6.4 By running Program P6_1 withnum=[2 10 23 34 31 16 4]andden=[36 78 87 59
26 7 1] we arrive at the following second-order factors:

The result of running the modified program P6_1 is the following:

sos =
0.0556 0.1667 0.1111 1.0000 0.5000 0.2500
1.0000 1.0000 2.0000 1.0000 0.6667 0.3333

1.0000 1.0000 0.5000 1.0000 1.0000 0.3333

In terms of the parameters p,, «;, and g, given in Eg. (6.8) of the Lab Manual, this
corresponds to the following:

The block-diagram of the cascade realization obtained from these factors is given below:
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A copy of Program P6_2 is given below:

% Program P6_2

% Parallel Form Realizations of an 1IR Transfer
num = input(“Numerator coefficient vector = ");
den = input("Denominator coefficient vector = ");
[ri,pl,k1] = residuez(num,den);

[r2,p2,k2] = residue(num,den);

disp("Parallel Form 17)

disp("Residues are®);disp(rl);

disp("Poles are at");disp(pl);

disp(“Constant value®);disp(kl);

disp("Parallel Form 11%)

disp("Residues are®);disp(r2);

disp("Poles are at");disp(p2);

disp(“Constant value®);disp(k2);

Project 6.3 Parallel Realization

Answers:

Q6.5 By running Program P6_2 withnum=[3 8 12 7 2 -2]landden=[16 24 24 14 5 1]
we arrive at the partial-fraction expansion of H{(z) in 71 given by:

For Parallel Form I, the program returns:

Parallel Form 1

Residues are
-0.4219 + 0.6201i
-0.4219 - 0.6201i
0.3438 - 2.5079i
0.3438 + 2.5079i
2.3438

Poles are at
-0.2500
-0.2500
-0.2500
-0.2500
-0.5000

Constant value

-2

+

+

0.66141i
0.6614i
0.4330i
0.4330i

+

Note that the complex poles occur in conjugate pairs with resides that are also conjugates. Thus, for a
pair of conjugate poles at ¢+ jd and c— jd with residues a+ jb and a-— jb, we get a pair of terms in the

Partial Fraction Expansion given by (read the help for residuez if this isn’t clear to you)

a+jb a-jb 2a—2(ac+hd)z™
o1 o1 d (02 q2)2"
1-(c+jd)z 1-(c—jd)z" 1-2cz7'+(c?+d?)z




For example, for the first pole pair returned for Parallel Form | above, we have a=-0.4219, b=0.6201,
¢ =-0.2500, and d =0.6614. Thus, the partial fraction expansion in z™* is given by (to within roundoff)

, 2(-0.4219)2[ (-0.4219)(-0.25)-+ (0.6201)(0.6614) 2"
1-2(-0.25)2 " +| (-0.25)" +(0.6614)" |2 *

 2(0:3438) - 2[ (0.3438)(-0.25) + (-2.5079)(0.4330) ]
1-2(-0.25)2 " +| (-0.25)" +(0.4330)" | 22

2.3438
+—
1+0.5z71
2.3438 N —0.8438-1.0312z71 N 0.6876+2.3437z7:
1+05z%  1+0.5z1+0.5272 1+0.5271+0.2527%°

H,(z)=-2

Comparing this partial fraction expansion to Eq. (6.10) on p. 96 of the Lab Manual, we have the following
values for the Parallel Form | parameters:

Vo =—2

Vo = 2.3438 7, =0 a,=05  ¢«,=0
Vo =—0.8438 y,=-10312 ¢,=05 ¢,=05
Vo3 = 0.6876 V3 = 2.3437 ;=05 a, =025

and the partial-fraction expansion of H4(z) in z given by:

For Parallel Form Il, the program returns:

Parallel Form I1
Residues are
-0.3047 - 0.4341i
-0.3047 + 0.4341i
1.0000 + 0.7758i
1.0000 - 0.7758i
-1.1719
Poles are at
-0.2500 + 0.6614i
-0.2500 - 0.6614i
-0.2500 + 0.4330i
-0.2500 - 0.4330i
-0.5000
Constant value
0.1875



The complex poles again occur in conjugate pairs with residues that are also conjugates. Read the help
for residue if you are unclear on how to put this together into the partial fraction expansion. Thus, for a

pair of conjugate poles at ¢+ jd and c¢c— jd with residues a+ jb and a- jb, we get a pair of terms in the
partial fraction expansion of the form

a+ jb a—jb _ 2az-2(ac+bd) z? 2az'-2(ac+bd)z”

—__+ . .
z—(c+jd) z-(c—jd) 2° - 2c2+(c? +d?) z? 1-2c27"+(c* +d?)z”?

For example, for the first pole pair returned for Parallel Form Il above, we have a =-0.3047, b =-0.4341,
¢ =-0.2500, and d =0.6614. Thus, the partial fraction expansion in z is given by (to within roundoff)

2(~0.3047)z — 2[ (~0.3047)(~0.25) + (~0.4341)(0.6614) |
22~ 2(-0.25)2-+|(-0.25)" +(0.6614)’ |

, 202-2[(1)(-0.25)+ (0.758)(0.4330)

22— 2(-0.25)2-+|(-0.25)" +(0.4330)’ |

11719

z+0.5
1.1719 N -0.6094z+0.4219 N 22-0.1718
z+0.5 z22405z+05  z2+4052z+0.25

H,(z) =0.1875+

=0.1875-

Multiplying each fraction in this expression times appropriate powers of z™* on top and bottom then gives:

-1 -2 _ -2

Hl(z)=0.1875—1'1719-2—4+ 0.623094z+0.4219_z_72 222 0.1718 %
z+05 z z2°+05z+05 2z 2°+0.5z+0.25 z

1.1719z71 N —0.6094z71+0.4219z72 2z1-0.1718z7

+ :
1+0.5z7" 1+0.5z71+05z7 1+0.5271+0.25272

=0.1875-

Comparing this partial fraction expansion to Eq. (6.11) on p. 96 of the Lab Manual, we have the following
values for the Parallel Form Il parameters:

8, =0.1875
6,=-11719  5,=0 @, =05 @, =0
5,=-06094 5,=04219  @,=05 a,=05

5,=2 5, =-01718 @,=05 @, =025



The block-diagram of the parallel-form | realization of H;(z) is thus as indicated below:

0.6876




The block-diagram of the parallel-form Il realization of H4(z) is thus as indicated below:
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Q6.6

By running Program P6_2 withnum=[2 10 23 34 31 16 4]andden=[36 78 87 59
26 7 1] we arrive at the partial-fraction expansion of Hy(z) in z1 given by:

Following the same procedure as in Q6.5, the residues and poles returned for Parallel From | are:
Parallel Form 1|

Residues are

-0.5952 - 0.75611
-0.5952 + 0.7561i
-0.5556 - 2.2785i
-0.5556 + 2.2785i
-0.8214 + 4.3920i
-0.8214 - 4.3920i
Poles are at
-0.5000 + 0.28871
-0.5000 - 0.28871
-0.3333 + 0.4714i
-0.3333 - 0.47141
-0.2500 + 0.43301
-0.2500 - 0.4330i

Constant value

4



Plugging into the complex pole pair formulas derived in Q6.5, we have
2(—0.5952) — 2[ (-0.5952)(-0.5) + (~0.7561)(0.2887) |
1-2(-05)z +| (<05 +(02887)" |2
. 2(—0.5556) — 2[ (-0.5556)(~0.3333) + (-2.2785)(0.4714) |z *
1-2(-0.3333)2 " +| (-0.3333)" +(0.4714)" 22
. 2(—0.8214) - 2[ (-0.8214)(-0.25) +(4.3920)(0.4330) ] z**
1-2(-0.25)2 " +| (-0.25)" +(0.4330)" | 2 2

H,(z)=4+

—1.1905—0.1587Z_l+ -1.1111+1.7778z7* +—1.6429—4.2143Z_1
1+z71+0.333322 1+0.6667z*+0.3333z2 1+0.5z1+0.25272% °

With relation to (6.10) on p. 96 of the Lab Manual, the Parallel Form | parameters are:

Vo =4

Voo =—1.1905  y,=-01587 o, =1 a,, =0.3333
Vo =—11111  y,=-17778 ¢, =0.6667 «,, =0.3333
Voo =—1.6429 3, =-42143 ¢, =05 0, =0.25

and the partial-fraction expansion of Hy(z) in z given by:
The residues and poles returned for Parallel From Il are:

Parallel Form 11
Residues are

0.5159 + 0.20621
0.5159 - 0.2062i
1.2593 + 0.4976i
1.2593 - 0.4976i
-1.6964 - 1.4537i
-1.6964 + 1.4537i
Poles are at
-0.5000 + 0.2887i
-0.5000 - 0.28871
-0.3333 + 0.4714i
-0.3333 - 0.47141
-0.2500 + 0.4330i
-0.2500 - 0.43301

Constant value
0.0556
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Plugging into the complex pole pair formulas derived in Q6.5, we have

2(0.5159)z - 2[ (0.5159)(-0.5) + (0.2062)(0.2887) |
22~ 2(-05)z-+|(-05)" +(0.2887)’ |
, 201:2503)2 - 2 (1.2503)(-0.3333) + (0.4976)(0.4714)]
22 —2(-0.3333)2-+| (-0.3333)" +(0.4714)’ |
 2(-1.6964)2 - 2[(-1.6964)(-0.25) + (-1.4537)(0.4330)
22~ 2(-0.25)2-+| (-0.25)" +(0.4330)’ |

1.0317z+0.3968+ 2.5185z+0.3704 N -3.3929z +0.4107
z22+2+0.3333  z?+0.6667z+0.3333  z?+0.52+0.25
1.0317z71+0.3968z%  2.5185z'+0.3704z%  -3.3929z'+0.4107z7°

H,(z) = 0.0556 +

=0.0556+

=0.0556 +

117710333327 1+0.666722+0333322 11052402522

With relation to (6.11) on p. 96 of the Lab Manual, the Parallel Form Il parameters are:

5, =0.0556
5,=10317  §5,=03968  a,=1 a, =0.3333
5,=25185  §5,=03704  a,=0.6667 a, =0.3333

5,=-33929 §5,=04107 @,=05  @,=025

11



The block-diagram of the parallel-form | realization of H,(z) is thus as indicated below:

N
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-1.1905

x[n]

=1




The block-diagram of the parallel-form Il realization of H5(z) is thus as indicated below:

r\O 0556
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Project 6.4 Realization of an Allpass Transfer function
Answers:

Q6.7 Using Program P4_4 we arrive at the following values of {k;} for Ag(z): All that is
required for this problem is to call poly2rc with the coefficients of the
denominator polynomial. The first coefficient should be a “1” and it is not here
(to make the numbers look nicer). So you may be bothered by the fact that the
help for poly2rc says that if dO isn’t one then everything will get scaled. That’s
true, but it’s just fine here because the numerator and denominator both get
scaled by 16; in other words, the reflection coefficients are not affected by the
scaling. The result of calling ploy2rc is:

0625  k(4)
6837 k(1)

0.2196  k(3) = 0.4811
0.6246

k(5)
k(2)

The block-diagram of the cascaded lattice realization of Ag (z) is thus as shown below:

x[n] —@
-0.0625 -0.2196 -0.4811 —0.6837 -0.6246
0.0625 [] 2196 {l 4811 (] 6837 (} 6246

yn] ~—&
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From the values of {k;} we conclude that the transfer function Ag(z) is - STABLE, since
k?<1 forall 1<i<5.

Q6.8 Using Program P4_4 we arrive at the following values of {k;} for Ag(z):

0.3717
0.8109

k(6)
k(3)

0.0278  k(5)
0.5922  k(2)

0.1344  k(4)
0.7711 k(1)

The block-diagram of the cascaded lattice realization of Ag (z) is thus as shown below.

x[n] —&
~0.0278 ~0.1344 -0.3717 ~0.7711 ~0.8109
0.0278 n H-Lt H?]? (1 7711 n 8109
y[n] —&

From the values of {k;} we conclude that the transfer function Ag(z) is — STABLE. All of the
reflection coefficients have squared-magnitudes strictly less than unity.

Q6.9 Using zp2sos we obtain the following factors of Ag(z):
sSos =

0.0625 0.1250 0 1.0000 0.5000 0
1.0000 2.0000 4.0000 1.0000 0.5000 0.2500
1.0000 1.0000 2.0000 1.0000 0.5000 0.5000

From the above factors we arrive at the decomposition of Ag(z) into its low-order allpass
factors as:

A+izt 14277044772 147142770

1+z*1l+z +z*21+z +1272

A(2)=

1 4zt i4lztez? | I4lztez?
81+ 2t 1+ zt+1 172 1+iz7t+1z772

1+z770 1437704777 L+i77M+772
1+ 2t 1+1 z‘1+ 772 1+ zt+1z772

The block-diagram of the canonic cascade realization of Ag(z) using Type 1 and 2 allpass
sections is thus as indicated below:

NOTE: Since a canonic realization is called for, it is required to use the structures
Type 1B given in Fig. 6.9(b) on page 97 of the Lab manual and Type 2A given in Fig.
6.10(a) on page 98. The other structures given in the other parts of these figures are
direct, but not canonical, since they use a number of delay elements that exceeds the
order of the section.

NOTE 2: In this problem we are required to use Type 1 and Type 2 allpass sections.
The use of Type 3 sections such as the one shown in Fig. 6.11(a) is therefore not
allowed. In this regard, you should contrast (6.14) and (6.15) on p. 97 of the Lab

14



manual. Therefore, for the second section in the expression for A5(z) above, we have
dl =d2 =0.5. For the third section, we have d1 = 0.5 and d2 = 1.

x[n]—

z" @
<4
0.5 0.5 t

?

The total number of multipliers in the final structure is 5.
Q6.10 Using zp2sos we obtain the following factors of Ag(z):
sos =
0.0278 0.0556 0.1111 1.0000 0.5000 0.2500
1.0000 2.0000 3.0000 1.0000 0.6667 0.3333
1.0000 3.0000 3.0000 1.0000 1.0000 0.3333

From the above factors we arrive at the decomposition of Ag(z) into its low-order allpass
factors as:

E+EzM 4127 1427143272 143271+3271
1+iz7' 4122 1+2z7'+1z272 1+z27t+1z72

As(2) =

1,151 -2 1,251 -2 1 -1 -2
1 j+dzt+z? o d+3rt+z? ) dvt4r
9 1+3z7 41722 " 1+2z7M+1z7%  l+zt+iz?

14151 Z—2 142771452 1,771,452
42 .3"3 .3
141714172 1427714172 14714142 :

The block-diagram of the canonic cascade realization of Ag(z) using Type 2 allpass sections is
thus as indicated below:

NOTE again that, because we are required to use Type 2 allpass sections, d1 and d2 cannot be
chosen as the explicit coefficients in the numerator and denominator polynomials (contrast
(6.14) and (6.15) on p. 97 of the Lab Manual). For the first section, we have d1 =d2 = 0.5. For
the second section, a suitable choice is d1 = 2/3 and d2 = 0.5. For the third section, it suffices to
take d1 =1and d2 = 1/3.

15



x[n] — 7! = v[n
(] : @ ylnl

°

The total number of multipliers in the final structure is 6Z.

Project 6.5 Cascaded Lattice Realization of an IIR Transfer function

A copy of Program P6_3 is given below:

% Program P6_3
% Gray-Markel Cascaded Lattice Structure
% k is the lattice parameter vector
% alpha is the vector of feedforward multipliers
format long
% Read in the transfer function coefficients
num = input(“Numerator coefficient vector = ");
den = input("Denominator coefficient vector = ");
N = length(den)-1; % Order of denominator polynomial
k = ones(1,N);
al = den/den(1);
alpha = num(N+1:-1:1)/den(1);
for 11 = N:-1:1,
alpha(N+2-i1:N+1) = alpha(N+2-ii:N+1)-alpha(N-ii+1)*al(2:ii+l);
k(i) = al(ii+l);
al(l:ii+l) = (l@:ii+l)-k(@iD*al(ii+1:-1:1))/(1-k(ii))*k(iN));
end
disp(“Lattice parameters are®);disp(k)
disp("Feedforward multipliers are®);disp(alpha)

Answers.

Q6.11 Using Program P6_3 we arrive at the lattice parameters and the feed-forward multiplier
coefficients of the Gray-Markel realization of the causal IIR transfer function H,(z) of Q6.3 as

given below:
Lattice parameters are

Columns 1 through 4
0.62459686089013 0.68373782742919 0.48111942348398 0.21960784313725

Column 5
0.06250000000000

Feedforward multipliers are

Columns 1 through 4
-0.12500000000000 0.31250000000000 0.16053921568627 0.18430047140849

Columns 5 through 6
-0.09085169508677 -0.01982100623522

16



From these parameters we obtain the block-diagram of the corresponding Gray-Markel
structure as given below:

x[n] —@& @ @ @ @
—0.0625 -0.2196 —0.4811 —(.6837 —-0.6246
0.0625 0.2196 04811 0.6837 0.6246

~0.1250 Y 03125 Y 0.1605 Y 0.1843 ~0.0909 ~0.0198
=) \‘I/ =(+) {4 y [”]

From the lattice parameters obtained using Program P6_3 we conclude that the transfer
function Hy(z) is — STABLE, since all the lattice parameters have squared magnitudes

strictly less than unity.

Q6.12 Using Program P6_3 we arrive at the lattice parameters and the feed-forward multiplier
coefficients of the Gray-Markel realization of the causal IIR transfer function Hy(z) of Q6.4 as

given below:
Lattice parameters are

Columns 1 through 4
0.81093584641352 0.77112772506402 0.59215187769984 0.37169052478550

Columns 5 through 6
0.13436293436293 0.02777777777778

Feedforward multipliers are

Columns 1 through 4
0.1111111122221111 0-.20370370370370 0.15199485199485 -0.04739265773254

Columns 5 through 7
-0.01456452038379 0.02345313662512 -0.01112037033486

From these parameters we obtain the block-diagram of the corresponding Gray-Markel structure
as given below:

&
-0.7711

07711

Y ~0.0474 I ~0.0146 Y 0.0235 ~0.1111
+ =it} + +H—=V [ H]

AL

Tn_ml Yn.z{m Yn.lszn
& &

From the lattice parameters obtained using Program P6_3 we conclude that the transfer
function H,(z) is — STABLE, since all the lattice parameters have squares strictly less

than unity in magnitude.
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Q6.13  The MATLAB program to develop the Gray-Markel realization of a causal IIR transfer function
using the function t£21atc is given below:

% Program P6 4

% Gray-Markel Cascaded Lattice Structure using tf2latc.

% k is the lattice parameter vector

% alpha is the vector of feedforward multipliers

% Program also computes the inversion of the lattice/ladder vectors.
format long

% Read in the transfer function coefficients

num = input(“Numerator coefficient vector = ");

den = input(“Denominator coefficient vector = ");

num = num/den(1); % normalize upstairs and down by dO.
den = den/den(l);

% here is the lattice/ladder realization from the transfer fcn:
[k,alpha] = tf2latc(num,den)

% now check Inversion

disp("Check of Lattice/Ladder Inversion:");

[num2,den2] = latc2tf(k,alpha)

Using this program we arrive at the lattice parameters and the feed-forward multiplier
coefficients (vectors k and alpha) of the Gray-Markel realization of the transfer function

H,(z) of Q6.3 as given below:

0.62459686089013
0.68373782742919
0.48111942348398
0.21960784313725
0.06250000000000

alpha =

-0.01982100623522
-0.09085169508677
0.18430047140849
0.16053921568627
0.31250000000000
-0.12500000000000

The parameters obtained using this program are THE SAME as those obtained in Q6.11.

Using the function 1atc2tf we obtain the following transfer function from the vectors k and
alpha:
num2 =
Columns 1 through 4
0.18750000000000 0.50000000000000 0.75000000000000 0.43750000000000
Columns 5 through 6
0.12500000000000 -0.12500000000000

den2 =
Columns 1 through 4
1.00000000000000  1.50000000000000 1.50000000000000 0.87500000000000
Columns 5 through 6
0.31250000000000 0.06250000000000

18



>> 16*num2

ans =
Columns 1 through
3.00000000000000
Columns 5 through
2.00000000000000

>> 16*den2

ans =
Columns 1 through
16.00000000000000
Columns 5 through
5.00000000000000

4

8.00000000000000 12.00000000000000 7 .00000000000000
6

-2.00000000000000

4

24 .00000000000000 24.00000000000000 14.00000000000000
6

1.00000000000000

The transfer function obtained is EQUIVALENT to H;(z) of Q6.3; as demonstrated above

the numerator and denominator coefficient vectors returned by latc2tf are equal to 1/16
times the values shown in (6.27).

Q6.14  Using this program we arrive at the lattice parameters and the feed-forward multiplier
coefficients (vectors k and alpha) of the Gray-Markel realization of the transfer function
Ho(z) of Q6.4 as given below:

0.81093584641352
0.77112772506402
0.59215187769984
0.37169052478550
0.13436293436293
0.02777777777778

alpha =

-0.01112037033486
0.02345313662512
-0.01456452038379
-0.04739265773254
0.15199485199485
0.20370370370370
0.11111111111111

The parameters obtained using this program are THE SAME as those obtained in Q6.12.

Using the function 1atc2tf we obtain the following transfer function from the vectors k and

alpha:
num2 =
Columns 1 through
0.05555555555556
Columns 5 through
0.86111111111111

den2 =
Columns 1 through
1.00000000000000
Columns 5 through

4

0.27777777777778 0.63888888888889 0.94444444444444
2

0.44444444444444 0.11111111111111

4
2.16666666666667 2.41666666666667 1.63888888888889
7
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0.72222222222222

>> 36*num2
ans =
Columns 1 through
2.00000000000000
33.99999999999999

Columns 5 through
31.00000000000000

>> 36*den2

ans
Columns 1 through
36.00000000000000

58.99999999999999

Columns 5 through
25.99999999999999

The transfer function obtained is EQUIVALENT to Hy(z) of Q6.4; the numerator and
denominator coefficients returned by latc2tf in this question are equal to 1/36 times the

0.19444444444444 0.02777777777778

4

7

4

7

10.00000000000000

16.00000000000000

77.99999999999997

7.00000000000000

original ones appearing in (6.28).
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Project 6.6 Parallel Allpass Realization of an IIR Transfer function

Answers:

Q6.15  Using zplane we obtain the pole-zero plot of G (z) as shown below:

0.8 e

0.6 ,/

0.2- !

Imaginary Part
o

o
(o]
T
/

/

I

1k \\\,%,4/4/
|
0

Real Part

Next using root s we obtain the pole locations of G (z) as given below:

>> p2 = roots(den)

p2 =
0.25221914966490 + 0.74515855654836i
0.25221914966490 - 0.745158556548361
0.47166170067020

>> Theta = angle(p2)*180/pi

Theta =
71.30021430520364

-71.30021430520364
0
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Making use of the pole-alteration property we thus arrive at the two allpass sections Ap(z) and
A1(2) as given below:

Ordering the poles by increasing angle implies that the pair of conjugate poles
should be associated with Ay(z), whereas the real pole should be associated with

A1(z). Thus, we have
denominator{Ab(z)}:[1—(0.2522+ jo.7452)z—1][1—(o.2522— j0.7452)z‘1J
=1-0.50447"1+0.6189z2,

denominator{A (2)}=1-0.4717z".

The numerator polynomials for Ag(z) and A1(z) then follow from the allpass

property; i.e., they must be the mirror image polynomials of the respective
denominator polynomials. We have

A(2) = 0.6189-0.5044z71+ 772
1-0.5044z71+0.6189z72'

-0.4714+77
)=,
A 1-0.4714z71

The power-complementary transfer function H (z) is therefore given by

1
H(2)=5{A@)-A@)
1/0.6189-0.5044z71+z72 —04714+77

B 2{1—0.50442‘1 +0.618922 1-0.47147 }

_ 0.5453-1.01713z7*+1.01713272 -0.5453z73
1-0.9761z1 +0.85682 72 -0.2919z 2 '

The order of Ag(z) is — N=2.

The order of A1(z) is -N=1.
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The block-diagram of a 3-multiplier realization of G (z) and H (z) using Type 1 and Type 2
allpass structures is as indicated below:

From the numerator of A0(z), it follows that d1 = -0.5044. Comparing the above
expression for A0(z) with (6.14) on p. 97 of the Lab manual, we then solve for d2
= -1.2270. The value of d1 for A1(z) may be obtained explicitly from the above

expression for A1(z).

=—%}—> z - ’ g
A\ 1
i
-0.5044 -1.227
IJ

- - TD_I—é
0. MJD

&)

0.5

& ]

KA




Q6.16  Using zplane we obtain the pole-zero plot of G (z) as shown below:

0.8+ - . 1

0.4 / 1 \ e

0.2- !

Imaginary Part
o
&

o
(o]
T
/

/

Real Part

Next using root s we obtain the pole locations of G (z) as given below:
>> p = roots(den)

p:

0.27615462038702
0.27615462038702
0.39360906693476
0.39360906693476
0.51037262535644

0.890714570077271
0.890714570077271
0.610157463236371
0.610157463236371

I+ 1 +

Making use of the pole-alteration property we thus arrive at the two allpass sections Ap(z) and
A1(2) as given below:

The angles of the poles are given by
>> Theta=angle(p)*130/pi

Theta =

52.55944857977081
-52.55944857977081
41.29245667713326
-41.29245667713326
0]
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This implies that the conjugate pole pair at ~ 53 deg should be combined with the real
pole for AO(z), whereas the conjugate pole pair at ~ 41 deg should be combined for
Al(z). For the denominators of A0(z) and A1(z) we therefore have

denominator {A,(2)} =|1-(0.2762++ 0.8907) 2" || 1-(0.2762 - j0.8907)z " |(1-05104z %),
denominator (A (z)} =|1-(0.3936+ j0.6102) 2" || 1-(0.3936 - j0.6102) 2" .

The numerators of AO(z) and A1(z) may then be solved as the mirror image polynomials
of the respective denominators. We have

_0.8696-0.5523z1+2z% -0.5104+z71
A(2)= -1 2 -1
1-0.5523z7+0.8696z™° 1-0.5104z
A@2)= 0.5272-0.7872z7 1+ 772
1-0.7872z71+0.5272z72°

The power-complementary transfer function H (z) is therefore given by

H(z):%

0.8696—0.5523z ' +z* -0.5104+z' 0.5272-0.7872z "' +z7
1-0.5523z71+0.8696z2 1-0.5104z! 1-0.7872z71+0.5272z72 |

The order of Ag(z) is — N=3.
The order of A(z) is — N=2.

The block-diagram of a 5-multiplier realization of G (z) and H (z) using Type 1 and Type 2
allpass structures is as indicated below:

For the first section of AO, we obtain directly from (6.14) on p. 97 of the lab manual that
dl = -0.5523. Solving (6.14) for d2, we obtain d2 = -1.5745. Comparing the above
expression for AO(z) to (6.13) on p. 97 of the Lab manual, we obtain for the second
section of AO (the first-order section) that d1 = -0.5104.

Similarly, from (6.14) on p. 97 of the Lab manual and the above expression for Al(z), we

have for Al(z) that d1 = -0.7872 and d2 = -0.6697. Thus, the required block diagram is
given by
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0.5

H(z)

Date: 10 November 2007 Signature: Havlicek
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