CHEMICAL REACTOR DESIGN FOR PROCESS PLANTS

Volume Two:

Case Studies and Design Data

HOWARD F. RASE

W. A. Cunningham Professor of Chemical Engineering The University of Texas at Austin

Original Illustrations by

JAMES R. HOLMES

Associate Professor of Engineering Graphics The University of Texas at Austin

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS, New York · London · Sydney · Toronto

Units are described by the following symbols:

H =thermal energy t = time

L = lengthT = temperature

M = mass

 $a_{\mathbf{w}}$

 b_{w}

A frequency factor, units same as corresponding rate

constant

A, B, ... reactants

cross-sectional area, L^2 A_c

acceptable percentage deviation of rate from that $A_{\rm D}$

at wall

absorption factor, dimensionless, see Eq. 14.55 A_f

heat-transfer surface, L^2 $A_{\rm h}$

a, b, c, . . . , r, s, . . . stoichiometric coefficients

exponents in rate equations and various constants $a, b, c, \ldots, r, s, \ldots$ activities of indicated components

 \mathbf{a}_{A} , \mathbf{a}_{B} , \mathbf{a}_{C} , ...

external surface area of catalyst per unit volume of $a_{\rm c}$

slurry, L^{-1}

external surface area of catalyst per unit mass, $a_{\rm m}$

 $L^{2}M^{-1}$

external surface area of an average particle, L^2 $a_{\mathfrak{p}}$

geometric surface area per unit volume of particle, $a_{\rm s}$

 L^{-1}

total surface area of packing per unit volume of a_{i}

packed system, L^{-1}

surface area of dispersed phase (bubble or drop) per a_V, a_r

unit volume of system or expanded slurry and per unit volume of continuous phase, respectively, L^{-1} wetted area of catalyst particle per unit mass of

catalyst, L^2M^{-1}

surface area per unit volume of screen wire, L^{-1} a_{WR}

 $E/R'T_i^2$ or $E/R'T_w^2$ \boldsymbol{R}

width of channel between plates, L $b_{\rm ch}$

thickness of coke, L $b_{\rm ck}$

mass of inert packing per mass of catalyst b_1

 b_s screen thickness, L

volume of inert packing per unit volume of catalyst b,

wall thickness, L

C	concentration, (moles) L^{-3}
C^{\ddagger}	concentration of activated complex, (moles) L^{-3}
$C_{\mathbf{A}}, C_{\mathbf{B}}, \ldots, C_{\mathbf{R}}, C_{\mathbf{S}}$	molar concentration of indicated component, $(\text{moles})L^{-3}$
C_{A}^*	concentration of A in bulk liquid at chemical equilibrium, (moles) L^{-3}
$C_{\mathbf{A}'}, C_{\mathbf{B}'}, \ldots, C_{\mathbf{R}'}, C_{\mathbf{S}'}$	moles of indicated component adsorbed per unit mass, (moles) M^{-1}
C_{A}''	concentration of A at beginning of poisoned zone, $(\text{moles})L^{-3}$
$C_{\mathbf{A}_a}, C_{\mathbf{B}_b}, \dots$	molar concentration of indicated component in indicated phase a or b , (moles) L^{-3}
$C_{\mathbf{B_b}}$	molar concentration of B in bulk liquid, (moles) L^{-3}
$C_{\mathbf{B}_d}$	molar concentration of B in dispersed phase, $(\text{moles})L^{-3}$
$C_{\mathbf{B}_{\mathbf{c}}}$	molar concentration of B in continuous phase, $(\text{moles})L^{-3}$
$C_{A_{\mathbf{c}}}, C_{B_{\mathbf{c}}}, \ldots, C_{R_{\mathbf{c}}}, C_{S_{\mathbf{c}}}$	effluent concentration of indicated component, $(\text{moles})L^{-3}$
$C_{\mathbf{A}_F}, C_{\mathbf{B}_F}, \dots$	concentration of indicated component in feed, $(\text{moles})L^{-3}$
$C_{\mathbf{A}_{I}},\ldots,C_{j_{I}}$	concentration of indicated component inside catalyst particle, (moles) L^{-3}
$C_{\mathbf{A_i}}, C_{\mathbf{B_i}}, \ldots, C_{\mathbf{R_i}}, C_{\mathbf{S_i}}$	molar concentration of indicated component at interface between two fluid phases, (moles) L^{-3}
$C_{\mathbf{A_s}}, C_{\mathbf{B_s}}, \dots$	concentration of indicated component at outer surface of catalyst, (moles) L^{-3}
$C_{\mathrm{D}}, C_{\mathrm{ds}}, C_{\mathrm{dst}}$	drag constants (see Eqs. 13.19–13.23)
C_{i}'	concentration of vacant sites per unit mass, $(\text{moles})M^{-1}$
$\mathbf{c_d}$	loss coefficient for orifice, screen, or perforated plate
c _o	hopper cone angle correction (see Fig. 13.9)
C_p	heat capacity at constant pressure for mixture in mass units, $HM^{-1}T^{-1}$ (f superscript designates fluid when possibility for ambiguity exists)
$c_{p_{\mathbf{A}}}, c_{p_{\mathbf{B}}}, \ldots, c_{p_{\mathbf{R}}}, c_{p_{\mathbf{S}}}$	molal heat capacity at constant pressure for indicated component, $H(\text{moles})^{-1}T^{-1}$
C p.,	molal heat capacity at constant pressure of reaction mixture per mole of A fed, $H(\text{mole of A})^{-1}T^{-1}$
C_{p_F}	heat capacity of feed, $HM^{-1}T^{-1}$

c_{p_I}	heat capacity of catalyst or other solid particle,
• •	$HM^{-1}T^{-1}$
$C_{p_{\mathbf{m}}}$	molal heat capacity at constant pressure of mixture,
Pm	$H(\text{moles})^{-1}T^{-1}$
c_v	molal heat capacity at constant volume,
- t	$H(\text{moles})^{-1}T^{-1}$
c _w	wall effect correction (see Eq. 13.15)
D	reactor or pipe inside diameter, L
D'	inside diameter in inches of reactor tube
\overline{D}	mean diameter of tube
$\boldsymbol{D}_{\mathrm{AB}}, \boldsymbol{D}_{\mathrm{BC}}, \dots$	bond energy for indicated bonds, $H(\text{mole})^{-1}$
$D_{\rm AB}, D_{\rm BC}, \dots$	diameter of coil, L
$D_{\rm ch}$	diameter of channel, L
	inside diameter of cylinder of coke, L
$\frac{D_{ck}}{D}$	mean diameter of coke cylinder, L
$ar{D}_{ m ck}$	impeller diameter, L
D_1	equivalent diameters for reactor jackets for heat
$D_{ m H},D_{ m H}{}'$	transfer and pressure drop, respectively, L
ъ	•
D_j	diameter of jet, L mean diameter of particles from screen or micro-
D_{m}	
_	scopic analysis, L
$D_{\rm O}$	outside diameter of pipe or tube, L
\overline{DP}	degree of polymerization
$D_{\mathtt{p}}$	diameter of a sphere having the same a_s as the
	particle in question, L
$D_{ m s}$	shaft diameter, L
\mathscr{D}	molecular diffusivity, L^2t^{-1}
$\mathscr{D}_{\mathbf{A}}, \mathscr{D}_{\mathbf{B}}, \dots$	molecular diffusivity of indicated component, L^2t^{-1}
$\mathscr{D}_{\mathbf{a}}$	axial dispersion coefficient (axial diffusivity), L^2t^{-1}
${\mathscr D}_{\mathbf f}$	dispersion coefficient in dense phase of two-phase
	fluidized-bed model, L^2t^{-1}
$\mathscr{D}_{I_{\mathbf{A}}}, \mathscr{D}_{I_{\mathbf{B}}}, \dots$	effective diffusivity in the interior of catalyst
	particle for indicated component, L^2t^{-1}
$\mathscr{D}_{\mathfrak{r}}$	effective radial diffusivity in catalyst bed, L^2t^{-1}
ď	diameter, $L(d_1 = \text{diameter of pipe jacket})$
d_B	bubble diameter, L
d_{c}^{ν}	diameter of cylinder, L
d_{ct}	outside diameter of coil tube, L
$d_{\rm d}$	average drop diameter, L
d_{\max}	maximum drop diameter, L
d_{\min}	minimum drop diameter, L
min	,

d_{p}	diameter of a sphere having same surface area as
F	particle in question, L
d_s	screen pore diameter, L
$d_{\rm sp}$	diameter of sphere
d_v	diameter of sphere having same volume as particle
	in question, L
$d_{\mathbf{w}}$	diameter of warp wire, L
E	energy of activation, $H(\text{mole})^{-1}$; prime indicates
L	value for reverse reaction; subscript obs indicates
	observed value when intraparticle diffusional re-
	•
F	sistances are significant fraction of bed that is effective
E_B	
$E_{\rm c}$	contactor efficiency
E_D	diffusional activation energy, $H(\text{mole})^{-1}$
$E_{\rm F}$	fuel efficiency for generating facility
$E_{\mathbf{G}}$	fractional point efficiency in plate tower
$E_{\rm mv}$	fractional Murphee plate efficiency
$E_{\rm p}$	polytropic efficiency
E_s	isentropic efficiency for compressor
E_{T}	energy dissipation per unit mass
E_{t}	turbine efficiency
E_z	energy necessary to separate two drops; see Eq. 15.13
EA	equilibrium approach, fractional approach to equi-
	librium
e, f, g, i, \dots	exponents in rate equations not necessarily the
	same as stoichiometric coefficients
$F_{\mathbf{A}}, F_{\mathbf{B}}, \dots$	molar feed rate of indicated component, (moles) t^{-1}
F_{e}	outlet flow from reactor, moles t^{-1}
F_{g}	molar gaseous feed rate, $(moles)t^{-1}$
$F_{\mathbf{L}}$	molar liquid feed rate, (moles) t^{-1}
$F_{ m PU}$	molar purge rate, (moles) t^{-1}
F_{Q}	molar quench flow rate, (moles) t^{-1}
$F_{\mathbf{r}}$	molar recycle flow rate, (moles) t^{-1}
F_{T}	total molar feed rate, $(moles)t^{-1}$
F(t)	residence time distribution function (see p. 318 ¹)
$\mathcal{F}_{A}, \mathcal{F}_{B}, \mathcal{F}_{j}, \ldots, \mathcal{F}_{T}$	moles of indicated component flowing per unit time
	at any position Z , (moles) t^{-1} ; T refers to total
	moles
f	friction factor for open pipe, dimensionless
$f_{\mathbf{A}}, f_{\mathbf{B}}, \ldots$	fugacity of indicated component, atm
$f_{\mathbf{A}}^{\circ}, f_{\mathbf{B}}^{\circ}, \dots, f_{\mathbf{j}}^{\circ}$	standard-state fugacity for indicated component
-	(unity for gaseous systems), atm

	213
$f_{ m e}$	initiator efficiency
f_{g}	friction factor for gas in fluidized bed or in pipe
$f_{\mathbf{k}}$	friction factor for packed bed
$f_{\mathbf{p}}$	particle friction factor in fluidized bed
$f_{\mathbf{w}}$	wire area per gauze cross-sectional area
G	mass velocity, $Mt^{-1}L^{-2}$
G'	molar mass velocity, (moles) $t^{-1}L^{-2}$
ΔG°	standard free energy of reaction, $H(\text{mole})^{-1}$
ΔG^{\ddagger}	free energy of activation, $H(\text{mole})^{-1}$; subscript L
20	refers to standard state of pressure and temperature
	of system; subscript p refers to standard state at
	1 atm
G	gaseous mass velocity, $Mt^{-1}L^{-2}$
G_{g} .	insoluble or nonabsorbable (inert) gas mass velocity,
$\sigma_{\rm i}$	insoluble of nonabsorbable (mert) gas mass velocity, $Mt^{-1}L^{-2}$
$G_{ m L}$	liquid mass velocity, $Mt^{-1}L^{-2}$
$G_{ m mf}$	
σ_{mf}	mass velocity at minimum fluidization velocity, $Mt^{-1}L^{-2}$
C	solids superficial mass velocity, $Mt^{-1}L^{-2}$ (sub-
$G_{\mathfrak{p}}$	
G_{s}	script <i>ch</i> designates velocity at choking conditions)
·	mass velocity in lb/(ft) ² (sec)
g	acceleration due to gravity
$g_{\rm c}$	force-mass conversion factor, 32.17 (lb _m ft)/(lb _f sec ²)
	and 980.7 $(g_m cm)/(g_f sec^2)$
$g_{\mathrm{f}},g_{\mathrm{m}}$	grams of force and grams of mass, respectively
Н	actual enthalpy at pressure and temperature of
	systems, $H(\text{mole})^{-1}$, subscript $(H_A, H_B, H_j,)$
TT\$	indicates component, or position
H*	ideal gas enthalpy, $H(\text{mole})^{-1}$
ΔH°	standard heat of reaction, $H(\text{moles})^{-1}$
ΔH^{\ddagger}	enthalpy of activation, $H(\text{mole})^{-1}$
$H_{\mathbf{a}}$	holdup for phase a or acid phase, volumes of a per
	unit volume of total mixture
$(\Delta H_{A})_{T_1}$	heat of reaction at indicated temperature, per mole
A 77	of A reacted, $H(\text{mole})^{-1}$
$\Delta H_{ m a}$	heat of adsorption, $H(\text{mole})^{-1}$; primed value is
	differential heat of adsorption; iso indicates isoteric
$H_{\mathbf{b}}$	holdup for b phase, volumes of b per total volume
$H_{\mathbf{D}}$	head generated by impeller, ft lb_f/lb_m or cm g_f/g_m
H_{d}	fractional volume or holdup of dispersed phase,
	volume of dispersed phase per unit volume of
	total mixture

${H_{f_{\mathbf{A}}}}^{\circ}, {H_{f_{\mathbf{B}}}}^{\circ}, \ldots, {H_{f_{\mathtt{j}}}}^{\circ}$	standard heat of formation per mole of indicated
H_{g}	component at 298° K, $H(\text{mole})^{-1}$. fractional gas holdup, volume of gas per unit volume
	of operating reactor volume
$H_{\rm L}$	total liquid holdup fraction, volume of liquid per total volume
H_1	enthalpy loss per mass of oil flow, HM^{-1}
$H_{\mathbf{OL}}$	operating fractional liquid holdup, volume of liquid per unit volume of operating reactor volume
ΔH_s	isentropic enthalpy change
$\Delta H_{\rm v}$	latent heat of vaporization
h	heat-transfer coefficient, $Ht^{-1}L^{-2}T^{-1}$
h	Planck's constant, 6.624×10^{-27} erg-sec per molecule
$h_{\rm c}$	height of cylinder, L
h_{G}	gas heat-transfer coefficient, $Ht^{-1}L^{-2}T^{-1}$
h_{g}	liquid heat-transfer coefficient with sparging, $Ht^{-1}L^{-2}T^{-1}$
h_{i}	inside film coefficient of tube, $Ht^{-1}L^{-2}T^{-1}$
h_{1}	liquid heat-transfer coefficient, $Ht^{-1}L^{-2}T^{-1}$
h_l	liquid height on tray, L
h_{o}	outside film heat-transfer coefficient
$h_{ m s}$	heat-transfer coefficient between catalyst surface
	and surrounding fluid, $Ht^{-1}L^{-2}T^{-1}$
h_{T}	overall heat-transfer coefficient from position $\mathbf{r} = R_h$ of bed to the jacket fluid, $Ht^{-1}L^{-2}T^{-1}$
h	wall heat-transfer coefficient, see page 406 ¹ Fq. 9.16,
$h_{ m w}$	$Ht^{-1}L^{-2}T^{-1}$
$h_{\mathbf{w}}^{\mathbf{s}}, h_{\mathbf{w}}^{\mathbf{f}}$	wall heat-transfer coefficient for solid and fluid, respectively, $Ht^{-1}L^{-2}T^{-1}$
hp	horsepower
I, I	intercept and inert, respectively
$[I]_a$	carbonium ion concentration in acid phase
I_{m}	dispersed phase mixing modulus
\overline{J}	mechanical equivalent of thermal energy, 778
	ft-lb _f /BTU, 0.4267 kg _f m/cal; $1/J = 1.286 \times 10^{-3}$
I	BTU/ft-lb _f , 2.343 cal/kg _f m <i>J</i> -factor for mass transport at catalyst surface,
${J}_{D}$	dimensionless (see Eq. 11.15)
${J}_{ m h}$	J-factor for heat transfer at catalyst surface,
h	dimensionless (see Eq. 11.16)
J_R	fraction of collisions that lead to reaction
~ n	

J_w	jacket space, L (see Table 8.7) any component
K	thermodynamic reaction equilibrium constant
K'	equilibrium constant for the surface reaction
K [‡]	thermodynamic equilibrium constant between re-
T.	actants and activated complex in terms of activities,
	dimensionless
$K_A, K_B, K_R, K_S, \dots$	apparent adsorption equilibrium constants for the
11A, 11B, 11R, 11S,	indicated reactants, atm ⁻¹ for gaseous components
•	or $(\text{moles})^{-1}L^3$ when concentration is used in rate
	equation
K_{b}	concentration equilibrium constant for reaction in
1 b	phase "b" (units depend on stoichiometry)
$K_{\rm e}$	equilibrium constant in concentration units (units
110	depend on stoichiometry)
$K_{\mathrm{c}}^{\ddagger}$	concentration equilibrium constant between re-
110	actants and complex that does not include the
	partition function for the reaction coordinate
K_D, K_D°	dissociation constants for substituted and un-
Λ , Λ , σ	substituted aromatic, respectively
$(K_{\rm d})_{\rm A}, (K_{\rm d})_{\rm B}$	distribution coefficients for indicated components,
(1xd)A, (1xd)B	dimensionless
\dot{K}_{G}	overall mass-transfer coefficients from bulk gas to
0	bulk liquid phase in terms of partial-pressure
	driving force, (moles) $t^{-1}L^{-2}(atm)^{-1}$
K_{L}	overall mass-transfer coefficients from bulk gas to
L	bulk liquid phase in terms of concentration driving
	force, Lt^{-1}
K _n	controller gain
K_p	equilibrium constant in partial-pressure units (units
ŗ	depend on stoichiometry)
$K_{\rm th}$	diffuser throw constant (see Table 7.3)
K_v	vapor-liquid equilibrium constant, dimensionless
k	rate constant as designated at point of use or based
	on activities
k	Boltzmann constant, $1.3805 \times 10^{-16} \text{ erg/(°K)}$
	(molecule)
$k_{\rm A}, k_{\rm B}, \ldots, k_{\rm R}, k_{\rm S}, \ldots$	adsorption rate constants for indicated components
	(desorption is indicated by prime), (moles) $L^{-3}t^{-1}$
	$(atm)^{-1}$ [(moles) $L^{-3}t^{-1}$ for k_A ']
k_a, k_b	reaction rate constants for multiphase reactions in
	a and b phases, respectively

$k_{aa}, k_{ab}, k_{ba}, k_{bb}$	copolymerization rate constants (see Eqs. 4.20 and 4.21)
k _c	reaction rate constant for rate equations involving concentration terms (prime indicates reverse rate constant), $(L^3/\text{moles})^{n-1}t^{-1}$
\hat{k}_c	same as k_c except per unit mass of catalyst, L^{3n} (moles) ¹⁻ⁿ $M^{-1}t^{-1}$
$k_{c_{\mathbf{e}}}$	same as k_c except based on exterior area of catalyst, $(\text{moles})^{1-n}L^{3n-2}t^{-1}$
k_{c_8}	reaction rate constant in terms of total catalyst surface area, $(\text{moles})^{1-n}L^{3n-2}t^{-1}$
$k_{c_{v}}$	reaction rate constant based on volume of catalyst and concentrations, $(\text{moles})^{1-n}L^{3n-3}t^{-1}$
k_d	rate constant for initiator dissociation
$k_{d0}, k_{d1}, \ldots, k_{dm}$	deactivation rate constants, order indicated by second subscript, that is, $k_{d1} =$ first-order deactivation constant
$k_{ m f}$	a concentration independent reaction rate constant for a gaseous reaction, units based on order
$k_{\mathbf{G}}$	mass-transfer coefficient between bulk gas and gas- liquid interface, partial-pressure driving force, $(\text{moles})t^{-1}L^{-2}(\text{atm})^{-1}$
$k_{\mathbf{g_A}}^{s}, k_{\mathbf{g_B}}^{s}$	mass-transfer coefficient for indicated component between catalyst surface and surrounding fluid with pressure driving force, (moles) $t^{-1}L^{-2}(atm)^{-1}$
$k_{ m L}$	mass-transfer coefficient between bulk liquid and gas or liquid-liquid interface when reaction occurs, Lt^{-1}
$k_{ t L}{}^{\circ}$	mass-transfer coefficient between bulk liquid and liquid-gas interface without reaction occurring, Lt^{-1}
k_n	rate constant for nth order reaction
k _o	apparent overall rate constant (see Eqs. 14.23 and 14.24)
k_p	reaction rate constant in terms of partial-pressure units; prime indicates reverse reaction, (moles) $L^{-3}t^{-1}(atm)^{-n}$; k_p^{\bullet} is value of k_p at outlet temperature
\hat{k}_p	reaction rate constant in terms of catalyst mass and partial pressures, (moles) $M^{-1}t^{-1}(atm)^{-n}$
$k_{pr} \ k_{p_s}$	polymerization (propagation) rate constant reaction rate constant based on total surface area and partial-pressure units, $(\text{moles})L^{-2}t^{-1}(\text{atm})^{-n}$

reaction rate constant based on exterior surface k_{p_e} area of particle and in terms of partial pressures, (moles) (exterior surface area) $^{-1}t^{-1}(atm)^{-n}$ k_a concentration independent rate constant for systems forming non-ideal solutions k_s surface reaction rate constant (prime is used for reverse reaction), units depend on order $k_{\rm sa}, k_{\rm sp}$ mass-transfer coefficient between catalyst surface and surrounding fluid with concentration driving force for indicated component, Lt^{-1} k_{ι} reaction rate constant for termination rate constant for termination by combination $k_{\rm re}$ $k_{\rm tr}$ rate constant for chain transfer reactor length, or length of bed in a catalytic reactor or packed tower, L LHSV liquid hourly space velocity, (volumes liquid) (volume reactor) $^{-1}t^{-1}$ $L_{\rm A}, L_{\rm B}, L_{\rm C}, \dots$ flammability limit in percent of indicated com- L_R equivalent length of one return bend $L_{\rm d}$ length of diffuser wall, L equivalent length of tube, ft L_{c} thickness of flat plate, L $L_{\mathbf{K}}$ L_n length of straight pipe, L depth of pore, L $L_{\rm p}$ concentration of active sites, (moles) M^{-1} L_R impeller blade length $l_{\rm i}$ lb_f, lb_m pounds of force and pounds of mass, respectively symbol for an active site distance between baffles in jacket. L l_{bp} l_s scale of smallest eddies, L monomer molecular weight of indicated component $M_{\rm A}, M_{\rm B}, M_{\rm i}, \dots$ M_F molecular weight of total feed M_{a} molecular weight of gas phase M_1 molecular weight of inerts molecular weight of mixture $M_{\rm m}$ \overline{M}_n number average molecular weight variously used as slope, constant, exponent, and m deactivating event order catalyst loading in slurry reactor per unit volume of $m_{\rm e}$ expanded slurry, ML^{-3} mass of monomer in drops, m $m_{\rm d}$

m_{E}	allowable entrainment, Mt^{-1}
$m_{ m H}$	Henry's law constant
$m_{\rm o}$	oil flow rate, Mt^{-1}
$m_{\rm s}$	mass of sample, M
$m_{\rm sf}$	solids flow rate, Mt^{-1}
$m_{\rm Z}$	rate of solids thrown into freeboard, Mt^{-1}
N N	impeller revolutions per unit time, usually expressed
	as rpm
$N_{\rm A}, N_{\rm B}, \dots$	mass-transfer rate of indicated component, (moles)
. А, . В,	$L^{-2}t^{-1}$
$N_{ m A}{}',N_{ m B}{}',\ldots$	mass-transfer rate, (moles) t^{-1}
N_{BO}	$(k_{\rm g})_{\rm p} R_{\rm p}/\mathscr{D}_{I_{\rm p}}$, Biot number for poison precursor
$N_{\mathbf{DA}}$	$(k_c)_p R_p/\mathcal{D}_{I_p}$, Damkohler number for poison
N_{Fr}	impeller Froude number, $N_2 D_1^2/g_c$
$N_{\mathbf{Kr}}$	Karlovitz number (see Eq. 10.32)
$N_{ m Nu}$	Nusselt number defined as used
$N_{\rm o}$	Avogadro's number, 6.02252×10^{23} molecules/mole
$N_{\rm p}$	power number, $P_a g_c / \rho N^3 D_1^5$
$(N_{\rm Pe})_{\rm a}$	axial Peclet number, $D_p u_s/\mathcal{D}_a$ for beds and Du/\mathcal{D}_a
- -	for empty tubes
$(N_{\mathrm{Pe}})_{\mathrm{r}}$	$D_{\rm p}u_{\rm s}/\mathcal{D}_{\rm r}$, radial Peclet number
N_{Pr}	Prandtl number, $c_p \mu / \lambda_f$
N_{Q_R}	discharge coefficient, Q_R/ND_1^3
N_{Re}	Reynolds number, D_pG/μ for catalyst bed, DG/μ
	for empty tube; $\bar{d}_v u_{\rm mf} \rho_{\rm g}/\mu_{\rm g}$ for fluidized bed at
	minimum fludization velocity
$(N_{\rm Re})_{ m I}$	impeller Reynolds number, $\rho ND_1^2/\mu$
$N_{ m s}$	solid diffusion number, for poison $3\mathcal{D}_{I_p}L/R_p^2u_i$
	where \mathcal{D}_{I_p} is the effective diffusivity in particle of
	poison precursor
$N_{ m Se}$	Schmidt number, $\rho \mu_{\rm f}/\mathscr{D}_{\rm j}$
N_{St}	Stanton number, h/c_pG
N_{T}	total number of trays
$N_lpha,N_eta,N_\delta,N_\zeta$	dimensionless groups for fluidized bed (see Eqs.
	13.30–13.33)
n	reaction order, also used to designate number of
	carbon atoms in a molecular formula
$n_{\rm A}, n_{\rm B}, \ldots, n_{\rm I}$	moles of indicated component (n_1 refers to inerts)
$n_{\mathbf{A_a}}, n_{\mathbf{B_a}}, \ldots, n_{\mathbf{l_a}}$	moles of indicated component per mole of A fed (I refers to inerts)
n_{A_F}, n_{B_F}, \dots	moles of indicated component per total moles of
"AF, "BF,	total feed
$n_{\rm b}$	number of impeller blades

$n_{ m by}$	number of vertical baffles
n_{ch}	number of channels per unit cross section of bed,
···cn	L^{-2}
n_I	number of equally spaced impellers
n_m	number of equally spaced impeners
$n_{\rm r}$	number of reactors in series
n_s	number of gauzes or screens
$n_{\rm sg}$	number of slugs per unit volume of fluidized bed
n_{T}	total moles in reaction mix or total moles per mole
•	of A, n_{T_a} , or per total moles of feed, n_{T_F}
n_1^*	total moles per unit mass at equilibrium, (moles)
•	M^{-1}
$n_{\rm tr}$	moles of tracer added in pulse
$n_{\mathbf{W}}$	mesh size of screen, (wires) L^{-1}
P	total pressure, atm or (force) L^{-2} , similar units for
	other pressure terms unless stated otherwise
ΔP	pressure drop
$\Delta P'$	pressure drop, psi
$P_{A}, P_{B}, P_{j}, \ldots, P_{R}, P_{S}$	partial pressure for indicated component, atm;
	asterisk is used to indicate value at thermodynamic
	equilibrium; sub I indicates inerts
$P_{\rm As}, P_{\rm Bs}$	partial pressure of indicated component at catalyst
_	surface, atm
$P_{\rm a}$	agitator power, (force)Lt ⁻¹
Pcr	critical pressure
$\Delta P_{\rm d}$	pressure gradient due to drag
$\Delta P_{\rm D}$	distributor pressure drop
$P_{\rm e}$	equivalent power (see Table 14.4)
ΔP_e	pressure drop due to sudden enlargement
$P_{\mathbf{f}}$	pressure factor, $y_f P$
$(\Delta P_f)_{\rm p}, (\Delta P_f)_{\rm g}$	frictional pressure drop due to particles and fluid,
AD = (AD/AZ)	respectively, in a fluidized bed
$rac{\Delta P_{ m G}}{P_{ m g}}, (\Delta P/\Delta Z)_{ m G}$	pressure drop and gradient as if gas flowing alone
$\stackrel{r}{P_{\mathbf{k}}}^{\mathbf{g}}$	power dissipated in liquid by sparging, (force) Lt^{-1} power required to compress gas; see Eq. 14.10
$\Delta P_{\rm L}$, $(\Delta P/\Delta Z)_{\rm L}$	pressure drop and gradient as if liquid flowing
$\Delta \Gamma_{\rm L}, (\Delta \Gamma/\Delta Z)_{\rm L}$	alone
P_{o}	vapor pressure, atm
$\Delta P_{\mathrm{TP}}, (\Delta P/\Delta Z)_{\mathrm{TP}}$	two-phase flow pressure drop and gradient
p	steric factor in collision theory
p	impeller blade pitch
$\overset{r}{Q}$	volumetric flow rate, L^3t^{-1}
\widetilde{Q}_F	volumetric feed rate, L^3t^{-1}
~.	

Q_{g}	volumetric gas flow rate, L^3t^{-1}
Q_{L}^{c}	volumetric liquid flow rate, L^3t^{-1}
Q_R	volumetric circulation rate in stirred tank or recycle rate, L^3t^{-1}
q	heat-transfer rate, Ht^{-1}
$q_{ m diff}$	differential heat of adsorption, $H(\text{mole})^{-1}$
q_{g}	heat generated, Ht^{-1} (prime indicates per mole of reactant basis)
$q_{ m i}$	heat flux based on inside surface area of tube, $HL^{-2}t^{-1}$
$q_{ m iso}$	isoteric heat of adsorption, $H(\text{mole})^{-1}$
q_{0}	heat flux based on outside surface area of tube, $HL^{-2}t^{-1}$
$q_{\mathfrak{p}}$	heat generation potential, dimensionless (see p. 2851)
$q_{ m r}$	heat removed, Ht^{-1} (prime indicates per mole of reactant basis)
$q_{ m v}$	heat generated per unit volume of tube, $HL^{-3}t^{-1}$
$q_{ m vw}$	heat generated per unit volume of tube determined
	at wall temperature, $HL^{-3}t^{-1}$
q_z	heat flux per unit length, $HL^{-1}t^{-1}$
R, S, \ldots	products
R	gas-law constant in PVT units, 82.06 (cm ³)(atm)/
	$(g \text{ mole})(^{\circ}K)$, 0.08204 (liter)(atm)/(g mole)($^{\circ}K$),
	$10.731 \text{ (ft)} (lb_f)/(in)^2 (lb \text{ mole}) (^{\circ}\text{R}), \text{ or } 0.7302 \text{ (ft}^3)$
D'	(atm)/(lb mole)(°R)
R'	gas-law constant in thermal units, 1.987 g cal/(g
מ מ	mole)(°K) or BTU/(lb mole)(°R)
R_1, R_2	reactivity ratios for copolymerization
R_B	radius of a bend, L
$R_{\rm b}$	radius of bed, L
$R_{\rm d}$	diffuser throat radius, L effective radius of agitation, L
$R_{\rm eff}$	
$R_{\rm j}$	rate of production of j in mass units, $ML^{-3}t^{-1}$ radius of spherical particle, L
R_{p} R_{q}	($dq_{\rm g}/dT$)/($dq_{\rm r}/dT$)
\mathcal{R}_{q}	fouling factor
\mathscr{R}_p	
n p	resistance coefficient for pipe (see p. 4211) radial distance from center of bed, L
r_1, r_2, \ldots	rates of reaction No. 1, No. 2,
$(-r_{\mathbf{A}})$	rate of disappearance of reactant A, (moles) $L^{-3}t^{-1}$
	into or alsappearance of reactant A. (Indies)1.
(-r,)	
$(-\hat{r}_{A})$	rate of disappearance of reactant A on a unit mass of catalyst basis, $(moles)M^{-1}t^{-1}$

HOWEHOLATORE	227
$(-r_{\mathbf{A}})_a, (-r_{\mathbf{B}})_b$	rate of indicated component disappearance per
	unit volume of indicated phase
$r_{\rm a}$	rate of adsorption, (moles) $M^{-1}t^{-1}$
$(\Delta r_{\rm A})_P, (\Delta r_{\rm A})_T$	rate error caused by pressure and temperature
	uncertainty, respectively
$(-\hat{r}_{\mathbf{A}})_{\mathbf{s}}$	rate of disappearance of A based on conditions at
	catalyst exterior surface, (moles) $M^{-1}t^{-1}$
$(-r_{\rm B})_{\rm so}$	mass of solid B consumed per unit time, Mt^{-1}
r_{ck}	rate of coke formation, (moles) $L^{-3}t^{-1}$
$r_{ m d}$	rate of desorption, $(\text{moles})M^{-1}t^{-1}$
$r_{ m g}$	reaction rate in gas phase, (moles) $L^{-3}t^{-1}$
\mathbf{r}_{I}	radial distance from center of particle (or drop), L
(r_1)	rate of generation of new radicals (rate of initiation)
	$(\text{moles})L^{-3}t^{-1}$
$r_{ m L}$	rate of reaction in liquid phase
$r_{ m p}$	pore radius, L
$r_{ m pr}$	rate of polymerization (propagation), (moles) $L^{-3}t^{-1}$
r_{R} , r_{S} , r_{j}	rate of formation of indicated product (moles)
	$L^{-3}t^{-1}$
r_{To}	combined rate in liquid and gas phase
$r_{\rm t}$	rate of termination
ΔS°	standard entropy of reaction, $H(\text{mole})^{-1}T^{-1}$
ΔS^{\ddagger}	entropy of activation, $H(\text{mole})^{-1}T^{-1}$; subscript
	"L" refers to standard state of pressure and
	temperature of the system, and subscript "p"
AC	refers to standard state of 1 atm
$\Delta S_{ m a}$	standard entropy of adsorption, $H(\text{mole})T^{-1}$
S_{c} S_{g}	coil spacing, L
သ _{စ္}	total surface area of a porous solid per unit mass,
S_{ℓ}	L^2M^{-1}
$S_{\rm n}$	slope
$\mathfrak{o}_{\mathfrak{n}}$	stoichiometric ratio of carbon burned per molecule
S_{R}, S_{S}	of O ₂ consumed
$S_{\mathbf{R}}, S_{\mathbf{S}}$	selectivity to desired product R and undesired
(SV)	product S (prime designates instantaneous value)
S	space velocity, t^{-1} , defined as volumes or mass
υ	number of equidistant centers surrounding each active site
T	
$T_{\rm b}$	temperature of reacting fluid, °K or °R
$T_{\rm cr}$	bulk fluid temperature
$\Delta T_{ m ck}$	critical temperature
~~ ^ CK	temperature drop across coke

$(\Delta T)_D$	temperature increase to double reaction rate
$T_{\rm e}$	effluent or exit temperature
$T_{\rm eq}$	equilibrium temperature
	feed temperature
T_{F}	
$\Delta T_{ m f}$	temperature drop across film
T_h	throw, distance traveled from a diffuser to a point
	corresponding to a predetermined terminal velocity,
	feet
T_I	interior catalyst temperature
$T_{\rm iso}$	isokinetic temperature
$T_{\mathbf{i}}$	jacket temperature (temperature of cooling or
1 j	heating medium)
A T	
$\Delta T_{ m M}$	temperature difference between middle of reactor
	and wall
T_{m}	mixture or mean temperature as indicated
T_{op}	optimum temperature for maximum rate
T_0	inlet or initial temperature or base temperature
T_{Q}	quench temperature
T_{r}	reduced temperature
$T_{R_{\mathbf{b}}}$	temperature in packed bed at $r = R_b$; superscripts
² K _b	f and s refer to fluid and solid, respectively
T T	temperatures in regenerator and reactor; respec-
$T_{\rm reg}, T_{\rm re}$	tively
T	•
$\frac{T_s}{T_s}$	exterior surface temperature of catalyst
$T_{\mathbf{w}}$	tube wall temperature
$\Delta T_{ m w}$	temperature drop across metal wall
T_{x}	temperature of coaxial gas (see Table 10.9)
t	time, t
$t_{\rm b}$	batch mixing time, t
$t_{\mathbf{D}}$	diffusion time, t
$t_{\rm f}$	mixing time with flow but no agitation, t
$t_{\rm mix}$	mixing time for CSTR, t
$t_{ m R}$	reaction time, t
••	time on stream, t
t_s	
$t_{\Delta Z}$	contact time for length ΔZ , tL^{-1}
U	overall heat-transfer coefficient with driving force
	of difference between bulk mean reactor temper-
	ature and jacket fluid temperature, $H/t^{-1}L^{-2}T^{-1}$
$U_{\mathrm{A}},U_{\mathrm{B}},U_{\mathrm{C}},U_{\mathrm{j}},\ldots$	internal energy of indicated component per mole,
- ,	$H(\text{mole})^{-1}$
$\Delta U_{ m A}$	internal energy of reaction per mole of A reacted,
— ~ A	$H(\text{mole})^{-1}$
	ment)

${U_{\mathrm{f}_{\mathtt{A}}}}^{\circ}, {U_{\mathrm{f}_{\mathtt{B}}}}^{\circ}, {U_{\mathrm{f}_{\mathtt{C}}}}^{\circ}, \dots$	standard internal energy of formation at 25°C, $H(\text{mole})^{-1}$
U_v	overall volumetric coefficient of heat transfer, $HL^{-3}t^{-1}T^{-1}$
U_z	point value of overall heat-transfer coefficient, $Ht^{-1}L^{-2}T^{-1}$
U_{ϱ}	point value in time of overall coefficient of heat transfer
u	velocity, Lt^{-1}
u'	shear rate, t^{-1}
u_1, u_2	upstream and downstream velocity, respectively, Lt^{-1}
u_B	bubble velocity, Lt^{-1}
u_b	burning velocity, Lt^{-1}
u_{ch}	superficial velocity of fluid at choking, Lt^{-1}
$u_{\rm f}$	free settling velocity, Lt^{-1}
$u_{\mathbf{g}}$	average linear velocity of gas phase in a fluidized
	bed or gas-liquid system, Lt ⁻¹
u_i	interstitial velocity in a bed of catalyst, Lt^{-1}
u_j	jet velocity, Lt^{-1} (see Table 10.9)
u_{m}	critical minimum superficial velocity to maintain
	all distributor openings operative, Lt^{-1}
$u_{ m mf}$	superficial velocity at point of minimum fluidization velocity, Lt^{-1}
u_{o}	velocity through orifice or sparger hole velocity, Lt^{-1}
$u_{\rm p}$	average linear velocity of particles, Lt^{-1}
$u_{\rm s}$	superficial fluid velocity, Lt^{-1}
$(u_s)_g$	superficial gas velocity, Lt^{-1}
u_{sg}	slug velocity, Lt^{-1}
$(u_s)_{\rm L}$	superficial liquid velocity, Lt^{-1}
$u_{\rm sl}$	slip velocity, Lt^{-1}
u_{st}	saltation velocity, Lt^{-1}
$\overline{u_{ m st}}$	saltation velocity for mixed sizes, Lt ⁻¹
u_{t}	terminal velocity, Lt ⁻¹
$u_{\rm vn}$	velocity of vapor based on net area of tower (cross-sectional area less downcomer cross section), Lt^{-1}
$u_{\mathbf{x}}$	coaxial velocity, Lt^{-1} (see Table 10.9)
u_z	point velocity, Lt^{-1}
\overline{V}	volume of reactor, L^3
V°	volume of gas adsorbed corrected to $0^{\circ}\mathrm{C}$ and 760 mm, L^3

V_a, V_b	fractional volumes of indicated phases, volume of
	phase/total volume of mixture
V_B	volume of bubble, L^3
$V_{\mathbf{i}}$	volume of reaction mixture below slurry-liquid
	interface, L^3
$V_{\mathbf{k}}$	volume of particle, L^3
$V_{ m L}$	liquid volume, L^3
$V_{ m m}^-$	volume of gas adsorbed as a monolayer corrected
	to 0° C and 760 mm, L^3
V_{p}	pore volume per unit mass of particle, L^3M^{-1}
$\dot{V_R}$	volume of reaction mix, L^3
$V_{ m sg}$	volume of slug, L^3
V_{T}	total aerated or expanded volume, L^3
v	specific molal volume, L^3 (mole) ⁻¹
v^{\ddagger}	molal volume of activated state L^3 (mole) ⁻¹
Δv^{\ddagger}	difference in molal volume between the activated
	state and the reactants, L^3 (mole) ⁻¹
v_{m}	mean molal volume, L^3 (mole) ⁻¹
W	mass of catalyst, M
W_a	actual work, $H(\text{mole})^{-1}$
$W_{ m d}$	width of flat diffuser, L
$W_{ m f}$	mass of fluid flowing per unit time, Mt^{-1}
W_{m}	weight fraction of a given mass
$(-W_s)$	isentropic work, $H(\text{mole})^{-1}$
\boldsymbol{w} .	extent-of-reaction factor (see p. 174 ^t)
w_2	weight fraction of polymer in polymer-rich phase
$w_{\mathbf{I}}$	impeller blade width, L
$(w_{\mathbf{l}})$	weight fraction initiator in monomer
w_{pr}	weight fraction of polymer in solution
$w_{\mathbf{x}}$	weight fraction of size fraction x
X_{A}, X_{R}, \dots	moles of indicated component converted per mole of
	A charged or fed
$X_{\mathbf{A}}^*$	equilibrium conversion of A
$X_{A_{T}}, X_{R_{T}}, \dots$	moles of indicated component converted per mole
	of total feed or charge
X_{e}	conversion at reactor discharge
X_1	conversion level at reactor inlet
X_0	conversion level in reactor feed or charge
$X_{\mathbf{A}}, X_{\mathbf{B}}, \ldots$	mole fraction of indicated component in liquid
	phase
X_n	mole fraction in liquid from tray n

	-51
$Y_{\mathbf{C}}$	fractional carbon remaining on catalyst, moles
	carbon remaining per mole carbon initially present
Y_G, Y_L	ratio of ΔP gradient for mixed phase to that for gas
	alone (G) or liquid alone (L) (see Fig. 14.8)
$Y_{\mathbf{R}}$	yield of desired product R (prime designates
- K	instantaneous value)
$y_{A}, y_{B}, \ldots, y_{R}, y_{S}$,
$y_A, y_B, \dots, y_R, y_S$	mole fraction of indicated component in gaseous
	phase (subscript i = interfacial value, subscript e
	refers to effluent, subscript 0 refers to feed or inlet
+	value)
<i>y</i> ⁺	mole fraction of a component in vapor in physical
	equilibrium with that component in liquid
$y_{\mathbf{b}}$	mole fraction in rich gas entering bottom of tower
$y_{\rm f}$	mole fraction factor for mass transfer, see Eq. 11.15,
	dimensionless
\mathcal{Y}_n	mole fraction of a vapor component from tray n .
y_1	mole fraction in lean gas leaving top of tower
Z	longitudinal distance along a reactor, L
Z''	length of poisoned zone in catalyst, L
$Z_{\mathfrak{c}}$	height of coil from tank bottom
Z_{F}	freeboard height, L
$Z_{\mathbf{i}}$	height of impeller from tank bottom, L
$Z_{\mathtt{L}}$	liquid height in a stirred or sparged vessel, L
$Z_{ m mf}$	height of bed at point of minimum fluidization
	velocity, L
Z_s	height of suspended solids, L
Z_{sg}	height of equivalent cylindrical slug having same
~ .	volume as actual slug (see Table 13.8)
Z_T	distance between set of nozzles or height of chamber,
1	ft (see Table 10.9)
Z_{ν}	vertical distance between pressure taps, L
Z Z	distance along film
_	
$Z_{\mathbf{m}}$	compressibility factor for mixture
Greek Letters	
α, β	various exponents and constants defined at
•	noint of use

α , β	various exponents and constants defined at point of use
	<u>.</u>
α_{a}	projected area of molecule adsorbed on sur-
	face, L^2 (molecule) ⁻¹
α_B	dimensionless statistical constant in Ergun
	equation

α_{ck}	fraction of coke generated that deposits on
	wall
$\alpha_{\mathbf{p}}$	fraction of catalyst surface poisoned, coked, or
	deactivated in some manner
β	solids angle of repose
β_B	constant in Ergun equation
β_d	constant in deactivation equation
$\Gamma_{\mathbf{A}}$	ratio of mass-transfer rate of A to total rate of
	transfer of all components
γ'	constant in deactivation equation
$\gamma_{A}, \gamma_{B}, \ldots, \gamma_{R}, \gamma_{S}, \ldots, \gamma^{\ddagger}$	activity coefficients for indicated components
γ_A^*, γ_B^*	activity coefficient for indicated components
,	that includes v_m
δ	fractional loss of selectivity
δ_{A}	change in moles per mole of A reacted
$\delta_{\rm c}$	thickness of combustion wave, L
$\delta_{ m f}$	film thickness, L
$\delta_{\mathfrak{p}}$	fraction of total pore length occupied by a
p	plug of liquid
δ_v	fractional change in volume upon poly-
· ·	merization
$\delta_{\scriptscriptstyle X}$	experimental error in conversion
ε ε	void fraction of a bed of catalyst
\mathcal{E}_{h}	fraction of fluidized bed occupied by bubbles
ε _{ch}	void fraction at choke
ε_l	liquid fraction of system volume below inter-
o _l	face
\mathcal{E}_{mf}	void fraction at minimum fluidization velocity
ε_{p}	particle void fraction
ε_{r}	roughness of pipe
$\varepsilon_{ m w}$	screen porosity or void fraction
$\zeta_{\mathbf{j}}$	stoichiometric coefficient for species j relative
וָל	to A, moles of j/mole of A in stoichiometric
	relation
η	effectiveness factor
η_I	inherent viscosity, $\ln (\eta_r)g^{-1}(100 \text{ ml})$
**	effectiveness factor including bulk transport
η_O	resistances
n	relative viscosity, polymer solution viscosity/
η_r	solvent viscosity
ГиЛ	intrinsic viscosity, dl./g
$[\eta]_T$	
V	angle

	200
$ heta_{ m a}$	fraction of surface covered at equilibrium
	adsorption
$ heta_{ m s}$	fraction of sites available at any time
K	transmission coefficient (see p. 171)
κ°	heat capacity ratio, c_p/c_r
κ_f	flow parameter (see Fig. 14.10 and Eq. 14.29)
Λ_t	fraction of fluid remaining longer than time t
λ	thermal conductivity, $HL^{-1}t^{-1}T^{-1}$
$\lambda_{ m a}$	axial thermal conductivity of catalyst bed,
	$HL^{-1}t^{-1}T^{-1}$
$\lambda_{\mathbf{ck}}$	thermal conductivity of coke, $HL^{-1}t^{-1}T^{-1}$
$\hat{\lambda}_{e}, \hat{\lambda}_{ea}, \hat{\lambda}_{ew}$	effective thermal conductivity general, of an
•	aggregate of particles, and of an aggregate next
	to wall, $HL^{-1}t^{-1}T^{-1}$
$\lambda_{\mathbf{f}}$	thermal conductivity of fluid, $HL^{-1}t^{-1}T^{-1}$
$\hat{\lambda}_{\mathbf{g}}$	gas conductivity, $HL^{-1}t^{-1}T^{-1}$
$\lambda_I^{\bar{z}}$	effective thermal conductivity of catalyst par-
•	ticle, $HL^{-1}t^{-1}T^{-1}$
$\lambda_{\mathbf{r}}$	effective radial thermal conductivity in operat-
	ing catalyst bed, $HL^{-1}t^{-1}T^{-1}$
$\lambda_{\mathrm{r}}^{\mathrm{f}}$	fluid contribution to effective radial thermal
•	conductivity, $HL^{-1}t^{-1}T^{-1}$
λ_r^{s}	solid contribution to effective radial thermal
•	conductivity, $HL^{-1}t^{-1}T^{-1}$
$\lambda_{\mathbf{w}}$	thermal conductivity of wall, $HL^{-1}t^{-1}T^{-1}$
μ	viscosity, $ML^{-1}t^{-1}$
μ_{b}	viscosity of bulk fluid, $ML^{-1}t^{-1}$
μ_{cr}	critical viscosity, $ML^{-1}t^{-1}$
μ_{f}	fluid viscosity, $ML^{-1}t^{-1}$
μ_{g}	viscosity of gas, $ML^{-1}t^{-1}$
μ_{L}	viscosity of liquid, $ML^{-1}t^{-1}$
$\mu_{ m m}$	viscosity of mixture, $ML^{-1}t^{-1}$
$\mu_{ m mi}$	viscosity, micropoise
μ_{r}	reduced viscosity, μ/μ_c
$\mu_{ m w}$	viscosity at wall, $ML^{-1}t^{-1}$
v	kinematic viscosity, L^2t^{-1}
$v_{\mathbf{A}}, v_{\mathbf{B}}, v_{\mathbf{j}}, \dots, v_{\mathbf{R}}, v_{\mathbf{S}}, \dots, v^{\ddagger}$	fugacity coefficients for indicated components
ξ	instantaneous number average degree of poly-
	merization
$ ho_{ m b}$	bulk density, ML^{-3}
$ ho_{ m ck}$	density of coke, ML^{-3}
$ ho_F$	molar density of feed, (moles) L^{-3}
• •	donoity of feed, (IIIOIES)L

2	2	A
4	J	•

$ ho_{ m f}$	fluid density, ML^{-3}
$ ho_{ m g}$	gas or vapor density, ML^{-3}
$ ho_{L}$	density of liquid, ML^{-3}
$\rho_{ m p}$	particle density, ML^{-3}
$ ho_{ m pr}$	polymer density, ML^{-3}
$\rho_{\rm s}$	solid density (excludes pore volume), ML^{-3}
σ	surface tension, Mt^{-2} or dynes/cm
$\sigma_{ m AB}$	distance between two molecules at collision
- AB	when considered as rigid spheres, L
σ_c	critical surface tension, Mt^{-2}
·	$\sigma_{AB}\mathbf{p}^{\frac{1}{2}}$, related to collision cross section, L
σ_e $ au$	
t	mean residence time for constant density flow,
	equivalent to holding time (reactor volume
	divided by volumetric flow rate) in plug flow
Y	and CSTR (backmixed reactor), t
Υ	tortuosity factor
$\Phi_{ m s}$	effectiveness factor modulus in terms of
	observables (see Eq. 3.23)
$\phi_{ m d}$	drop diffusion modulus (see Eq. 15.3)
$\phi_{ m f}$, $\phi_{ m q}$	correction constants in rate equations for
	gaseous and liquid reaction systems, re-
	spectively (see p. 37 ¹)
$\phi_{ t L}$	Thiele modulus for flat slab (see p. 134 ¹)
$\phi_{ m s}$	Thiele effectiveness factor modulus for spher-
	ical particle (see Eq. 3.14, 121 ^I)
$\phi_{ m sp}$	sphericity factor (see Eqs. 11.17 and 13.2)
ψ	instantaneous activity, actual rate/rate at zero
	time or at start up
$\omega_{\mathtt{A}}$	$\delta_{\mathbf{A}}y_{\mathbf{A}_0}$
ω_e	(equivalent length of pipe)/(actual length)
ω_i	dispersed phase mixing frequency or inter-
	action rate, volume mixed/(time)(volume of
	dispersed phase)
Frequently used subscripts:	• •

Frequently used subscripts:

e	effluent or product condition
f	fluid
i	value at interface; also any free radical
j	any component; also used to refer to jacket
LM	logarithmic mean
0	initial or feed condition
S	refers to surface of particle unless noted otherwise

Frequently used superscripts:

- f fluid
- standard state unless otherwise defined
- final discharge or product value
- s refers to surface of particle unless noted otherwise
- ‡ activated state
- * value at chemical equilibrium unless noted otherwise